Question: S i L ( y ) = y ' ' + a y ' + b y , donde a y b son constantes, sea

SiL(y)=y''+ay'+by, donde ayb son
constantes, sea fla solucin particular de
L(y)=0 que satisface las condiciones:
f(0)=0,f'(0)=1.
Demostrar que una solucin particular de
L(y)=R(x) est dada por lafrmula:
y(x)=cxf(x-t)R(t)dt
para cualquier constante cr1=r2=
my(x)se
reduce a:
y(x)=emxcx(x-t)e-mtR(t)dt
S i L ( y ) = y ' ' + a y ' + b y , donde a y b

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!