Question: Show using the definition of limit for sequences, ( the one that says that for all epsilon>0, there is a N such that n>N and

Show using the definition of limit for sequences, ( the one that says that for all epsilon>0, there is a N such that n>N and that implies that |an-L|

The limit when n goes to infinity of n!/(n^n)=0

I have got some answer but no one with the definition of limit for sequences, so please if you are going to try it, do it with it

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!