Question: Simple Regression Analysis Results REGRESSION STATISTICS Multiple R 0.943 R square 0.889 Adjusted R square 0.878 Standard error 8.360 Observations 12.000 ANALYSIS OF VARIANCE (ANOVA)
Simple Regression Analysis Results
| REGRESSION STATISTICS | |||||||||||||||||||||||||||
| Multiple R | 0.943 | ||||||||||||||||||||||||||
| R square | 0.889 | ||||||||||||||||||||||||||
| Adjusted R square | 0.878 | ||||||||||||||||||||||||||
| Standard error | 8.360 | ||||||||||||||||||||||||||
| Observations | 12.000 | ||||||||||||||||||||||||||
| ANALYSIS OF VARIANCE (ANOVA) | |||||||||||||||||||||||||||
| Degrees of Freedom | Sum of Squares | Mean Square | F -statistic | Significance of F -statistic | |||||||||||||||||||||||
| Regression | 1.000 | 5601.111 | 5601.111 | 80.143 | 0.000 | ||||||||||||||||||||||
| Residual | 10.000 | 698.889 | 69.889 | ||||||||||||||||||||||||
| Total | 11.000 | 6300.000 | |||||||||||||||||||||||||
| Coefficients | Standard Error | t -statistic | P -value | Lower 95 percent | Upper 95 percent | ||||||||||||||||||||||
| Intercept | 210.444 | 12.571 | 16.741 | 0.00000001 | 182.435 | 238.454 | |||||||||||||||||||||
| Price | 1.578 | 0.176 | 8.952 | 0.00000434 | 1.970 | 1.185 | |||||||||||||||||||||
| RESIDUAL OUTPUT | |||||||||||||||||||||||||||
| Observation | Predicted Q | Residuals | Actual Q (lbs.) | Actual P (cents/lb.) | |||||||||||||||||||||||
| 1 | 52.667 | 2.333 | 55 | 100 | |||||||||||||||||||||||
| 2 | 68.444 | 1.556 | 70 | 90 | |||||||||||||||||||||||
| 3 | 84.222 | 5.778 | 90 | 80 | |||||||||||||||||||||||
| 4 | 100.000 | 0.000 | 100 | 70 | |||||||||||||||||||||||
| 5 | 100.000 | 10.000 | 90 | 70 | |||||||||||||||||||||||
| 6 | 100.000 | 5.000 | 105 | 70 | |||||||||||||||||||||||
| 7 | 100.000 | 20.000 | 80 | 70 | |||||||||||||||||||||||
| 8 | 107.889 | 2.111 | 110 | 65 | |||||||||||||||||||||||
| 9 | 115.778 | 9.222 | 125 | 60 | |||||||||||||||||||||||
| 10 | 115.778 | 0.778 | 115 | 60 | |||||||||||||||||||||||
| 11 | 123.667 | 6.333 | 130 | 55 | |||||||||||||||||||||||
| 12 | 131.556 | 1.556 | 130 | 50 | |||||||||||||||||||||||
Table 4.1 contains the results of a regression of Q (lbs.) on P (cents/lb.). Treat the variable Q (lbs.) as dependent variable, and P (cents/lb.) as independent variable, Using Table 4.1 to answer the following questions:
1. Present regression analysis results in a table form. Please round all numbers to 3 decimal places for easy reading. 2. Briefly explain: a) how different statistical measures (R square, Adjusted R square, and F-statistic) can be used to evaluate these regression results, and b) what do these measures indicate? 3. What is the estimated equation? 4. What is the estimate of intercept? Is the intercept estimate significant at the 95% level? How did you conclude this? 5. What is the P coefficient estimate? Is the P coefficient estimate significant at the 95% level? How did you conclude this? What does this P coefficient estimate tell us? 6. Calculate the price elasticity of demand for this demand curve at mean level. Please show your work. What does this price elasticity of demand indicate? 7. What is the predicted value of Q when P = 75? Use the estimated equation in to find the predicted value
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
