Question: Step 2 . Now we show that T is closed under vector addition. Suppose that v 1 and v 2 belong to We want to

Step 2. Now we show that T is closed under vector addition. Suppose that v1 and v2 belong to
We want to show that v1+v2 also belongs to T. To show this, firstly note that we know these vectors must be of the form
v1=s([3],[-1],[2]) and v2=t([3],[-1],[2])
for some s,tinR. So we have
v1+v2=s([3],[-1],[2])+t([3],[-1],[2])=([3],[-1],[2])
where (in terms of s and t)
=
Thus v1+v2 is of the form required, and so we have shown T is closed under vector addition.
Step 2 . Now we show that T is closed under

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Civil Engineering Questions!