Question: steps i-iv please!!! Question #10: Shell Momentum Balance for Flow in Circular Tube. Consider the flow of a Newtonian fluid in a vertical circular pipe
Question \#10: Shell Momentum Balance for Flow in Circular Tube. Consider the flow of a Newtonian fluid in a vertical circular pipe under steady-state conditions. The pressure gradient is imposed in the z-direction. (See the figure below) i) Using the shell momentum balance, derive the velocity distribution within the circular tube using the no-slip boundary condition, at r=Rv2=0. Show that the maximum velocity takes place at the center of the tube. ii) Using the Newton's Law of Viscosity [rz=(dvv2/dr)], derive the shear stress distribution. iii) Determine the average velocity of the fluid within the tube by integrating the velocity distribution over the cross-sectional area of the differential volume element. What is this equation known as? iv) Find the volumetric flow rate of the fluid within the tube by multiplying the average velocity with the flow area
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
