Question: Suppose that when evaluating an integral, we make the trigonometric substitution x=sectheta . Find the value of ln|sectheta +tantheta |-csctheta +C in terms of x
Suppose that when evaluating an integral, we make the trigonometric substitution
x=sec\\\\theta .\ Find the value of
ln|sec\\\\theta +tan\\\\theta |-csc\\\\theta +Cin terms of
x.\
ln|x+(1)/(\\\\sqrt(x^(2)-1))|-(\\\\sqrt(x^(2)-1))/(x)+C\ ln|x+\\\\sqrt(x^(2)-1)|-(x)/(\\\\sqrt(x^(2)-1))+C\ ln|x+(x^(2))/(\\\\sqrt(x^(2)-1))|-(\\\\sqrt(x^(2)-1))/(x^(2))+C\ ln|x+\\\\sqrt(x^(2)-1)|-(\\\\sqrt(x^(2)-1))/(x)+C\ ln|x+(x)/(\\\\sqrt(x^(2)-1))|-(\\\\sqrt(x^(2)-1))/(x)+C 
Suppose that when evaluating an integral, we make the trigonometric substitution x=sec. Find the value of lnsec+tancsc+C in terms of x. lnx+x211xx21+Clnx+x21x21x+Clnx+x21x2x2x21+Clnx+x21xx21+Clnx+x21xxx21+C
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
