Question: the code and the output is attached as below. Give me some paragraphs on discussion. here is the discussion format you should give me in

the code and the output is attached as below. Give me some paragraphs on discussion. here is the discussion format you should give me in. it should be detailed and in standard format such as for a research report.
DIscussion:
Analysis and Discussion
The analysis will include:
Detailed discussion of the correlation coefficients and scatter plots.
Comparison of findings with existing research and theoretical expectations.
Discussion of anomalies and outliers, providing plausible explanations for any deviations from expected trends.
Code:
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Read data files
house_prices_df = pd.read_excel("MeanHousePricesClean-1.xlsx")
crime_df = pd.read_excel("CrimeClean-1-1.xlsx")
population_df = pd.read_excel("PopulationClean.xlsx")
area_df = pd.read_excel("SuburbAreas-1.xlsx", header=None)
# Transform area_df to long format
area_df.columns = area_df.iloc[0] # Set the first row as the header
area_df = area_df[1:] # Remove the first row from the dataframe
area_df = area_df.set_index('Property').transpose().reset_index()
area_df.columns =['local_government_area', 'area_sq_km']
# Convert 'area_sq_km' to numeric
area_df['area_sq_km']= pd.to_numeric(area_df['area_sq_km'], errors='coerce')
# Rename columns in house_prices_df and crime_df to ensure consistent naming
house_prices_df = house_prices_df.rename(columns={'Year': 'year'})
crime_df = crime_df.rename(columns={'Year': 'year', 'Local Government Area': 'local_government_area',
'Incidents recorded': 'incidents_recorded',
'Crime rate per 100,000 population': 'crime_rate'})
population_df = population_df.rename(columns={'Year': 'year'})
# Function to normalize LGA names
def normalize_lga_names(df, lga_column):
if lga_column in df.columns:
df[lga_column]= df[lga_column].astype(str).str.strip().str.replace('Shire','').str.replace('City','').str.strip()
return df
# Normalize LGA names in all relevant DataFrames
house_prices_df = normalize_lga_names(house_prices_df, 'local_government_area')
crime_df = normalize_lga_names(crime_df, 'local_government_area')
for col in population_df.columns[1:]:
population_df = normalize_lga_names(population_df, col)
area_df = normalize_lga_names(area_df, 'local_government_area')
# Transform house_prices_df to long format
house_prices_long_df = pd.melt(house_prices_df, id_vars=['year'], var_name='local_government_area', value_name='house_price')
# Normalize 'local_government_area' column in house_prices_long_df
house_prices_long_df = normalize_lga_names(house_prices_long_df, 'local_government_area')
# Transform population_df to long format
population_long_df = pd.melt(population_df, id_vars=['year'], var_name='local_government_area', value_name='population')
# Normalize 'local_government_area' column in population_long_df
population_long_df = normalize_lga_names(population_long_df, 'local_government_area')
# Merge DataFrames
merged_df = pd.merge(crime_df, population_long_df, on=['year', 'local_government_area'])
merged_df = pd.merge(merged_df, house_prices_long_df, on=['year', 'local_government_area'])
merged_df = pd.merge(merged_df, area_df, on='local_government_area', how='left')
# Convert 'population' to numeric
merged_df['population']= pd.to_numeric(merged_df['population'], errors='coerce')
# Calculate population density
merged_df['population_density']= merged_df['population']/ merged_df['area_sq_km']
# Calculate correlations
correlation_house_prices_population_density = merged_df['house_price'].corr(merged_df['population_density'])
correlation_crime_rate_house_prices = merged_df['crime_rate'].corr(merged_df['house_price'])
correlation_crime_rate_population_density = merged_df['crime_rate'].corr(merged_df['population_density'])
# Print correlations
print("Correlation between house prices and population density:", correlation_house_prices_population_density)
print("Correlation between crime rate and house prices:", correlation_crime_rate_house_prices)
print("Correlation between crime rate and population density:",
the output is in the image. add intext citation while using other research paper where this hypothesis was discussed and provide apa reference at the end. dont answer if all the above criteria are not met.
 the code and the output is attached as below. Give me

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!