Question: The cost function for producing x items is C(x) = 45000 + 25x - 0.10x^2. The revenue function R(x) = 750 - 0.60x^2. a.Determine the
The cost function for producing x items is C(x) = 45000 + 25x - 0.10x^2. The revenue function R(x) = 750 - 0.60x^2. a.Determine the production cost for the first 500 items. b.The marginal cost function. c.How fast is the cost growing when production is at 500 units. d.The average cost per item for the first 500 items. e.The marginal revernue function R'(x). f.The profit function. g.The marginal profit function. h.What production level maximizes revenue.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
