Question: The Hamiltonian operator for a 2-state system is given by H = a1|1){1| + a2|2) (2| + b (|1) (2| + |2) (1|) ,

 

The Hamiltonian operator for a 2-state system is given by H =

The Hamiltonian operator for a 2-state system is given by H = a1|1){1| + a2|2) (2| + b (|1) (2| + |2) (1|) , where a1, az and b are real numbers, and the kets |1) and |2) form an orthonormal basis. Find the energy eigenvalues and the corresponding eigenkets, as linear combinations of |1) and |2). Deduce these results in the case where a1 = -a2 = b = a.

Step by Step Solution

3.38 Rating (157 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

To find the energy eigenvalues and the corresponding eigenkets for the given Hamiltonian operator well first express the Hamiltonian as a matrix using ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Physics Questions!