Question: The proof that is shown. Select the answer that best completes the proof. Given: MNQ is isosceles with base , and and bisect each other

The proof that is shown. Select the answer that best completes the proof. Given: MNQ is isosceles with base , and and bisect each other at S. Prove: Square M N Q R is shown with point S in the middle. Lines are drawn from each point of the square to point S to form 4 triangles. We know that MNQ is isosceles with base . So, by the definition of isosceles triangle. The base angles of the isosceles triangle, and , are congruent by the isosceles triangle theorem. It is also given that and bisect each other at S. Segments _______ are therefore congruent by the definition of bisector. Thus, by SAS. NS and QS NS and RS MS and RS MS and QS

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock