Question: The university data center has two main computers: computer 1 and computer 2. A new routine has recently been written for computer 1 to handle
The university data center has two main computers: computer 1 and computer 2. A new routine has recently been written for computer 1 to handle its tasks, while computer 2 is still using the preexisting routine. The center wants to determine if the processing time for computer 1's tasks is now less than that of computer 2. A random sample of
10
processing times from computer 1 showed a mean of
46
seconds with a standard deviation of
19
seconds, while a random sample of
9
processing times from computer 2 (chosen independently of those for computer 1) showed a mean of
50
seconds with a standard deviation of
15
seconds.
Assume that the populations of processing times are normally distributed for each of the two computers, and that the variances are equal.
Can we conclude, at the
0.05
level of significance, that
1
, the mean processing time of computer 1, is less than
2
, the mean processing time of computer 2?
Perform a one-tailed test. Then complete the parts below.
Carry your intermediate computations to three or more decimal places and round your answers as specified in the table. (If necessary, consult a list of formulas.)
|
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
