Question: this is the full code, modify it to resolve the shape issue. Decoder part cant be modified def train _ classifier ( args , train,

this is the full code, modify it to resolve the shape issue. Decoder part cant be modified
def train_classifier(args, train, dev):
# Initialize the model
model = Transformer(embed_size=20,
num_layers=1,
max_length=100,
num_classes=3,
vocab_size=27) # Adjust input_size and num_classes as needed
# Optimizer and loss function
optimizer = optim.Adam(model.parameters(), lr=1e-4)
loss_fcn = nn.NLLLoss()
# Hyperparameters
num_epochs =10
batch_size =32
# Training loop
for epoch in range(num_epochs):
total_loss =0.0
random.seed(epoch)
# Shuffle the training data for each epoch
random.shuffle(train)
for idx in range(0, len(train), batch_size):
batch = train[idx:idx + batch_size]
batch_loss =0.0
# Collect inputs and outputs for the current batch
input_tensors =[]
output_tensors =[]
for example in batch:
# Get the input and output tensors from the LetterCountingExample
input_tensor = example.input_tensor.unsqueeze(0) # Add batch dimension
output_tensor = example.output_tensor.unsqueeze(0) # Add batch dimension
input_tensors.append(input_tensor)
output_tensors.append(output_tensor)
# Stack the input tensors to create a batch
input_batch = torch.cat(input_tensors, dim=0) # Shape: (batch_size, seq_length)
output_batch = torch.cat(output_tensors, dim=0) # Shape: (batch_size,)
# Forward pass (get log probabilities and attention maps)
log_probs, _= model(input_batch) # Ensure model outputs are correct
# Reshape to match the loss function
seq_length = input_batch.size(1) # Get the sequence length
output_batch_expanded = output_batch.unsqueeze(1).expand(-1, seq_length) # Expand the output batch
log_probs = log_probs.view(-1,3) # Reshape to (batch_size * seq_length, num_classes)
# Flatten the expanded output to match log_probs
loss = loss_fcn(log_probs, output_batch_expanded.view(-1)) # Reshape to match log_probs
# Backpropagation and optimization step
optimizer.zero_grad() # Clear previous gradients
loss.backward() # Compute gradients
optimizer.step() # Update model parameters
# Accumulate the loss
batch_loss += loss.item()
total_loss += loss.item()
print(f"Batch loss: {batch_loss}")
print(f"Total loss on epoch {epoch +1}: {total_loss}")
# Set the model to evaluation mode after training
model.eval()
return model
####################################
# DO NOT MODIFY IN YOUR SUBMISSION #
####################################
def decode(model: Transformer, dev_examples: List[LetterCountingExample], do_print=False, do_plot_attn=False):
"""
Decodes the given dataset, does plotting and printing of examples, and prints the final accuracy.
:param model: your Transformer that returns log probabilities at each position in the input
:param dev_examples: the list of LetterCountingExample
:param do_print: True if you want to print the input/gold/predictions for the examples, false otherwise
:param do_plot_attn: True if you want to write out plots for each example, false otherwise
:return:
"""
num_correct =0
num_total =0
if len(dev_examples)>100:
print("Decoding on a large number of examples (%i); not printing or plotting" % len(dev_examples))
do_print = False
do_plot_attn = False
for i in range(len(dev_examples)):
ex = dev_examples[i]
(log_probs, attn_maps)= model(ex.input_tensor.unsqueeze(0)) # Add batch dimension
predictions = np.argmax(log_probs.detach().numpy(), axis=1)
if do_print:
print("INPUT %i: %s"%(i, ex.input))
print("GOLD %i: %s"%(i, repr(ex.output.astype(dtype=int))))
print("PRED %i: %s"%(i, repr(predictions)))
if do_plot_attn:
for j in range(len(attn_maps)):
attn_map = attn_maps[j]
fig, ax = plt.subplots()
im = ax.imshow(attn_map.detach().numpy(), cmap='hot', interpolation='nearest')
plt.colorbar(im)
plt.title("Attention Map for Input %i, Head %i"%(i, j))
plt.savefig(f"attention_map_input_{i}_head_{j}.png")
plt.close(fig)
num_total += len(ex.output)
num_correct +=(predictions == ex.output).sum()
print("Accuracy: %.2f%%"%(num_correct *100.0/ num_total))

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!