Question: this is the full code, modify it to resolve the shape issue. Decoder part cant be modified def train _ classifier ( args , train,
this is the full code, modify it to resolve the shape issue. Decoder part cant be modified
def trainclassifierargs train, dev:
# Initialize the model
model Transformerembedsize
numlayers
maxlength
numclasses
vocabsize # Adjust inputsize and numclasses as needed
# Optimizer and loss function
optimizer optim.Adammodelparameters lre
lossfcn nnNLLLoss
# Hyperparameters
numepochs
batchsize
# Training loop
for epoch in rangenumepochs:
totalloss
random.seedepoch
# Shuffle the training data for each epoch
random.shuffletrain
for idx in range lentrain batchsize:
batch trainidx:idx batchsize
batchloss
# Collect inputs and outputs for the current batch
inputtensors
outputtensors
for example in batch:
# Get the input and output tensors from the LetterCountingExample
inputtensor example.inputtensor.unsqueeze # Add batch dimension
outputtensor example.outputtensor.unsqueeze # Add batch dimension
inputtensors.appendinputtensor
outputtensors.appendoutputtensor
# Stack the input tensors to create a batch
inputbatch torch.catinputtensors, dim # Shape: batchsize, seqlength
outputbatch torch.catoutputtensors, dim # Shape: batchsize,
# Forward pass get log probabilities and attention maps
logprobs, modelinputbatch # Ensure model outputs are correct
# Reshape to match the loss function
seqlength inputbatch.size # Get the sequence length
outputbatchexpanded outputbatch.unsqueezeexpand seqlength # Expand the output batch
logprobs logprobs.view # Reshape to batchsize seqlength, numclasses
# Flatten the expanded output to match logprobs
loss lossfcnlogprobs, outputbatchexpanded.view # Reshape to match logprobs
# Backpropagation and optimization step
optimizer.zerograd # Clear previous gradients
loss.backward # Compute gradients
optimizer.step # Update model parameters
# Accumulate the loss
batchloss loss.item
totalloss loss.item
printfBatch loss: batchloss
printfTotal loss on epoch epoch : totalloss
# Set the model to evaluation mode after training
model.eval
return model
####################################
# DO NOT MODIFY IN YOUR SUBMISSION #
####################################
def decodemodel: Transformer, devexamples: ListLetterCountingExample doprintFalse, doplotattnFalse:
Decodes the given dataset, does plotting and printing of examples, and prints the final accuracy.
:param model: your Transformer that returns log probabilities at each position in the input
:param devexamples: the list of LetterCountingExample
:param doprint: True if you want to print the inputgoldpredictions for the examples, false otherwise
:param doplotattn: True if you want to write out plots for each example, false otherwise
:return:
numcorrect
numtotal
if lendevexamples:
printDecoding on a large number of examples i; not printing or plotting" lendevexamples
doprint False
doplotattn False
for i in rangelendevexamples:
ex devexamplesi
logprobs, attnmaps modelexinputtensor.unsqueeze # Add batch dimension
predictions npargmaxlogprobs.detachnumpy axis
if doprint:
printINPUT i: si exinput
printGOLD i: si reprexoutput.astypedtypeint
printPRED i: si reprpredictions
if doplotattn:
for j in rangelenattnmaps:
attnmap attnmapsj
fig, ax pltsubplots
im aximshowattnmap.detachnumpy cmap'hot', interpolation'nearest'
pltcolorbarim
plttitleAttention Map for Input i Head ii j
pltsavefigfattentionmapinputiheadjpng
pltclosefig
numtotal lenexoutput
numcorrect predictions exoutputsum
printAccuracy: fnumcorrect numtotal
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
