Question: TITULAR, JOEI.

    TITULAR, JOE I.                                                  August 8, 2023

    PhD Math Ed Section 2

    MATH ED 808 Advanced Topics in Geometry


    Problem Set 2


    Use the given below to answer items 1 and 2:

    Given: In a projective plane, let A1A2Abe distinct points on a line and B1B2Bbe distinct points on another line s, and if c1 = AB1, c2 = AB2 and c3 = AB3 are on a point O, then the points, CAB·AB3CAB·ABand CAB·ABare on line that is concurrent with and s.


  1. Draw the figure corresponding to the given proposition.


Figure: 

03 b S BO B 2 B3



  1. State the duality of the given proposition.


Answer:

In a projective plane, let a1a2abe distinct lines on a point and b1b2bbe distinct lines on another point S, and if C1 = ab1, C2 = ab2 and C3 = ab3 are on a line o, then the lines,  cab·ab3cab·aband cab·abare on point that is collinear with and S.








 

  • In the figure below, show that there exists a projective transformation

R






Q

q

 

r(A1, B1, C1) -

 

 

^

 

s(A2, B2, C2) 








Solution: 








Use the given below to answer items 4 and 5:


Given 4 distinct points, W, X, Y, Z on a line a. To prove that there exists a projectivity which carries

W, X, Y, Z into X, W, Z, Yconsider the outline of the proof given below:


Proof: Project the points W, X, Y, Z from point not on a. Section by (distinct from and AY) on and obtain the points W’, X’, Y’, Z’so that that Y = Y’Join W’ and meeting AZ = at Z’’.

4.    Draw the figure with the conditions in the given and in the outline of the proof stated above.


  • Supply the missing basis of each pencil and center of perspectivity that are established below.

 



image text in transcribed

 
  

  • Use the figure drawn below to show that the pencil with elements B,A,D,E is projective to the pencil with elements Q, S, C, E.


 




 
 

03 b S BO B 2 B3

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!