Question: A basis of the subspace W = {(a - 2b, b + c, a) | a, b, c R} is: Select one: OB =
A basis of the subspace W = {(a - 2b, b + c, a) | a, b, c € R} is:
Select one:
OB = {(1,0, –1), (-2,1,0), (0, 1, 0)}
B = {(1,0, 1), (2, –1,0), (0, 1, 0)}
B = {(1,0, 1), (2, 1,0), (0, 1, 0)}
B = { (1,0,1), (–2, 1, 0), (0, 1, 0)}
The set W = e M (2, R): 2a - b = 0 , c + d = 0} is a subspace of M (2, R)
Choose one;
O True
O False
Una base del subespacio W = {(a 2b, b+c, a) | a, b, c = R} es: Seleccione una: O O O O B= {(1,0,1), (-2, 1, 0), (0, 1, 0)} B = {(1, 0, 1), (2, -1,0), (0, 1, 0)} B = {(1, 0, 1), (2, 1, 0), (0, 1, 0)} B = {(1, 0, 1), (-2, 1, 0), (0, 1, 0)} El conjunto W = de M(2, R) Elija una; O Verdadero O Falso {(a b) = M (2, R) : 2a b = 0,c+d=0} es un subespacio E
Step by Step Solution
3.39 Rating (158 Votes )
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
