Question: Use MATLAB's symbolic capability to solve an equation, Eq_ 2. Then, determine the first and second order derivatives of the equation. Lastly, solve y for
Use MATLAB's symbolic capability to solve an equation, Eq_ 2. Then, determine the first and second order derivatives of the equation. Lastly, solve y for x value of 2. Y=3x^4 - 2x^3 + 3x^2 + 4x - 11 A pendulum is a rigid object suspended from a frictionless pivot point (see Figure I). If the pendulum is allowed to swing back and forth with a given inertia, we can find the frequency of oscillation with the equation, Eq 3 2pi f= sqaureroot mgL/I Where: f=frequency, m= mass of the pendulum. G=acceleration due to gravity. L= distance from the pivot point to the center of gravity of the pendulum, and I=inertia Create a symbolic equation for frequency. Use MATLAP" s symbolic capability to solve for the length I. Find the distance from the pivot point to the center of gravity if the volume of f m and f are given as follows f=0.1 s^-1 m= 2 kg I=50 kg m/s Create a graph of frequency, f versus length L
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
