Question: ***Use R to develop a Poisson model and a negative binomial model for MI crash frequencies. Validate your models and compare their performance. Select three
***Use R to develop a Poisson model and a negative binomial model for MI crash frequencies. Validate your models and compare their performance. Select three explanatory variables to interpret their effects. *MI= Count of possible injury and non-incapacitating injury crashes
*Use R*
| Zone_ID | SIF | MI | PDO | TruckRatio | Street_mile | RoadDensity | SIF | MI | PDO | VMT | TruckRatio | Freeway_mile | Ave_mile | MI | PDO | TruckRatio |
| 1 | 8 | 19 | 12 | 0.011603 | 0.164401 | 216.2768 | 193.2495 | 170.2222 | 147.1949 | 124.1677 | 101.1404 | 78.1131 | -37.0233 | -60.0505 | -106.105 | |
| 2 | 28 | 275 | 181 | 0.092104 | 0.807822 | 1970.344 | 1757.201 | 1544.057 | 1330.914 | 1117.77 | 904.6269 | 691.483 | -374.234 | -587.377 | -1013.66 | |
| 3 | 4 | 54 | 24 | 0.025337 | 0.261658 | 601.2713 | 538.1738 | 475.0763 | 411.9788 | 348.8813 | 285.7838 | 222.686 | -92.8012 | -155.899 | -282.094 | |
| 4 | 0 | 5 | 5 | 0.039438 | 0.146013 | 162.4087 | 145.845 | 129.2813 | 112.7176 | 96.15396 | 79.59028 | 63.0266 | -19.7918 | -36.3554 | -69.4828 | |
| 5 | 7 | 33 | 17 | 0.084979 | 0.443269 | 427.1601 | 382.2364 | 337.3127 | 292.3891 | 247.4654 | 202.5417 | 157.618 | -67.0003 | -111.924 | -201.771 | |
| 6 | 11 | 125 | 254 | 0.052308 | 1.105728 | 2741.746 | 2456.792 | 2171.837 | 1886.883 | 1601.929 | 1316.974 | 1032.02 | -392.751 | -677.706 | -1247.61 | |
| 7 | 1 | 43 | 25 | 0.072882 | 0.371901 | 940.5741 | 843.9917 | 747.4092 | 650.8267 | 554.2443 | 457.6618 | 361.079 | -121.833 | -218.415 | -411.58 |
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
