Question: Use the following data to construct one mean (x-bar) chart and one range chart (R-chart). The measurements are in ounces. Is the process in control?
| Use the following data to construct one mean (x-bar) chart and one range chart (R-chart). The measurements are in ounces. | |||||||||
| Is the process in control? | |||||||||
| Sample # | a | b | c | d | e | f | |||
| 1 | 19.47 | 21.21 | 20.51 | 21.19 | 21.21 | 22.00 | |||
| 2 | 21.43 | 21.05 | 21.46 | 21.48 | 21.05 | 21.07 | |||
| 3 | 20.11 | 21.37 | 19.89 | 20.18 | 21.37 | 19.98 | |||
| 4 | 20.90 | 20.88 | 20.59 | 21.10 | 20.88 | 20.22 | |||
| 5 | 21.24 | 20.41 | 20.15 | 21.50 | 20.41 | 19.52 | |||
| 6 | 20.75 | 20.81 | 21.43 | 21.34 | 20.81 | 20.97 | |||
| 7 | 20.50 | 21.41 | 21.12 | 20.10 | 21.41 | 19.67 | |||
| 8 | 21.34 | 21.50 | 21.75 | 21.45 | 21.50 | 21.84 | |||
| 9 | 20.01 | 19.90 | 20.67 | 20.90 | 19.90 | 20.76 | |||
| 10 | 20.90 | 20.12 | 20.82 | 20.73 | 20.12 | 21.33 | |||
| 11 | 21.12 | 21.10 | 20.13 | 20.71 | 21.10 | 20.86 | |||
| 12 | 20.72 | 21.33 | 22.04 | 21.39 | 21.33 | 19.65 | |||
| 13 | 21.49 | 21.34 | 21.18 | 21.50 | 21.34 | 21.38 | |||
| 14 | 21.50 | 21.19 | 21.34 | 20.19 | 21.19 | 20.54 | |||
| 15 | 20.46 | 20.19 | 20.57 | 21.03 | 20.19 | 21.01 | |||
| 16 | 20.37 | 20.08 | 21.00 | 20.87 | 20.08 | 20.67 | |||
| 17 | 20.28 | 21.10 | 20.47 | 20.59 | 21.10 | 20.46 | |||
| 18 | 20.45 | 20.52 | 21.47 | 21.41 | 20.52 | 20.37 | |||
| 19 | 21.29 | 21.35 | 21.29 | 21.28 | 21.35 | 20.28 | |||
| 20 | 20.33 | 21.20 | 20.25 | 20.98 | 21.20 | 20.45 | |||
| 21 | 21.22 | 21.00 | 20.56 | 20.54 | 21.00 | 21.29 | |||
| 22 | 22.00 | 19.52 | 20.76 | 21.38 | 19.52 | 20.33 | |||
| B. After a number of complaints about its directory assistance, a telephone company examined | |||||||||
| samples of calls to determine the frequency of wrong numbers given to callers. Each sample | |||||||||
| consisted | of 100 samples. | ||||||||
| Is the process stable (i.e, in control)? Determine 2-sigma control limits. | |||||||||
| Sample | Errors | ||||||||
| 1 | 5 | ||||||||
| 2 | 3 | ||||||||
| 3 | 5 | ||||||||
| 4 | 7 | ||||||||
| 5 | 4 | ||||||||
| 6 | 6 | ||||||||
| 7 | 8 | ||||||||
| 8 | 4 | ||||||||
| 9 | 5 | ||||||||
| 10 | 9 | ||||||||
| 11 | 3 | ||||||||
| 12 | 4 | ||||||||
| 13 | 5 | ||||||||
| 14 | 6 | ||||||||
| 15 | 6 | ||||||||
| 16 | 7 | ||||||||
| 17 | 5 | ||||||||
| 18 | 4 | ||||||||
| 19 | 8 | ||||||||
| 20 | 2 | ||||||||
| C | |||||||||
| Given the following data for the number of defects per spool of cable, using three-sigma limit, | |||||||||
| is the process in control? Compute UCL and LCL. | |||||||||
| Observation | No. of errors | ||||||||
| 1 | 2 | ||||||||
| 2 | 4 | ||||||||
| 3 | 1 | ||||||||
| 4 | 0 | ||||||||
| 5 | 1 | ||||||||
| 6 | 3 | ||||||||
| 7 | 2 | ||||||||
| 8 | 0 | ||||||||
| 9 | 2 | ||||||||
| 10 | 1 | ||||||||
| 11 | 3 | ||||||||
| 12 | 3 | ||||||||
| 13 | 2 | ||||||||
| 14 | 1 | ||||||||
| 15 | 5 | ||||||||
This has to be done on excel
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
