Question: Using C++ Please Header Code #ifndef NSTEP_CODING #define NSTEP_CODING #include using std::string; #include using std::vector; string vec_2_str(const vector & v); vector gen_nstep_vector (long limit, long

Using C++ Please

Using C++ Please Header Code #ifndef NSTEP_CODING #define NSTEP_CODING #include using std::string;#include using std::vector; string vec_2_str(const vector& v); vector gen_nstep_vector (long limit, longnstep); string num_to_nstep_coding(long num, long nstep); long nstep_coding_to_num(const string& coding, const vector&nstep_sequence); #endif Only need proj06_functions.cpp Thanks Fibonacci n-step sequences But why should

Header Code

#ifndef NSTEP_CODING #define NSTEP_CODING #include using std::string; #include using std::vector; string vec_2_str(const vector& v); vector gen_nstep_vector (long limit, long nstep); string num_to_nstep_coding(long num, long nstep); long nstep_coding_to_num(const string& coding, const vector& nstep_sequence); #endif 

Only need proj06_functions.cpp

Thanks

Fibonacci n-step sequences But why should we restrict ourselves to 2-seeds and the sum of the 2-previous numbers. Why not 3, 6, 9 etc? Sure, why not. We can generalize to Fibonacci n-step numbers where n represents both the number of seeds required and the number of previous values that are added to create the next number in the sequence. Here are some examples fibonacci tribonacci tetranacci 112358 13 21 34 55 89 144 233 377 610 11247 13 24 44 81 149 274 504 927 1705 3136 1124815 29 56 108 208 401 773 1490 2872 5536 entan hexanacci heptan octonacci nonanacC decanacci acci 11 248 16 3161 120 236 464 912 1793 3525 6930 1124816 32 63 125 248 492 976 1936 3840 7617 acci11248 16 3264 127 253 504 1004 2000 3984 7936 11 24 8 16 32 64 128 255 509 1016 2028 4048 8080 1124816 3264 128 256 511 1021 2040 4076 8144 11 24 8 16 32 64 128 256 512 1023 2045 4088 8172 10 Fibonacci n-step sequences But why should we restrict ourselves to 2-seeds and the sum of the 2-previous numbers. Why not 3, 6, 9 etc? Sure, why not. We can generalize to Fibonacci n-step numbers where n represents both the number of seeds required and the number of previous values that are added to create the next number in the sequence. Here are some examples fibonacci tribonacci tetranacci 112358 13 21 34 55 89 144 233 377 610 11247 13 24 44 81 149 274 504 927 1705 3136 1124815 29 56 108 208 401 773 1490 2872 5536 entan hexanacci heptan octonacci nonanacC decanacci acci 11 248 16 3161 120 236 464 912 1793 3525 6930 1124816 32 63 125 248 492 976 1936 3840 7617 acci11248 16 3264 127 253 504 1004 2000 3984 7936 11 24 8 16 32 64 128 255 509 1016 2028 4048 8080 1124816 3264 128 256 511 1021 2040 4076 8144 11 24 8 16 32 64 128 256 512 1023 2045 4088 8172 10

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!