Question: Using EXCEL. Please see attached. Thank you. Assume that the data (See attached) represent a random sample from a larger population and do the following:
Using EXCEL. Please see attached. Thank you.
Assume that the data (See attached) represent a random sample from a larger population and do the following:
a.Calculate the exact 95 percent upper and lower confidence limits for the population mean of LOS.
b.Calculate the exact 95 percent upper and lower confidence limits for the population mean of charges.
c. Calculate the exact 95 percent upper limit only for the population mean of charges-that is, the value below which 95 percent of all sample means will be respected to fall.
d. Calculate the exact 95 percent upper and lower confidence limits for the population proportion, which is female.
Use the file generated by selecting one hundred samples of thirty waiting times (see attached data set).
a.Calculate the exact 95 percent upper lower confidence limits for each sample.
b. Use the ( ) statement, as given in Figure 7.3, to determine whether the confidence limits for each sample contain the true population mean.
c. Use ( ) to determine whether the proportion of samples of the one hundred actually contains the true mean of the population within the 95 percent limits.
d. Can you account for the result you got in (c)?
Calculate the approximate size required for each of the following at 95 percent confidence:
a. Standard deviation = 10, (ME) = 0.5, two tail
b. Standard deviation = 10, (ME) = 0.5, one tail
c. Standard deviation = 10, (ME) = 1.5, two tail
d. Standard deviation = 10, (ME) = 1.5, one tail
e.Standard deviation = 35, (ME) = 5, two tail
f. Standard deviation = 35, (ME) = 5, one tail
g.Standard deviation = $3,200, (ME) = 400, two tail
h.Standard deviation = $3,200, (ME) = 400, one tail
A hospital administrator wants to measure average cost per stay in his institution. He is willing to be within $200 of the true value with a probability of 95 percent. An initial investigation of a random sample of ten records determined that the standard deviation of cost was $3,987. How large a sample will need to be taken to meet the administrators needs?

Charges $ 2,426.48 $ 6,815.61 $ 7,596.68 $ 6,450.77 $ 3,542.79 $ 2,590.86 $ 5,082.83 $ 3,580.55 $ 11,045.79 $ 19,708.11 $ 8,953.38 $ 7,000.21 $ 5,330.24 $ 6,864.63 $ 4,318.13 $ 6,424.30 $ 5,184.53 $ 1,871.78 $ 11,179.97 $ 3,405.38 $ 1,731.73 $ 5,384.92 $ 5,216.91 $ 2,489.65 $ 8,244.25 $ 3,548.05 $ 4,713.26 $ 5,804.21 $ 2,945.22 $ 1,035.75 $ 17,005.45 $ 4,637.96 $ 17,480.97 $ 5,029.09 $ 3,078.99 $ 2,146.99 $ 5,482.93 $ 1,078.56 $ 9,931.21 $ 2,451.69 $ 2,834.68 $ 1,547.81 $ 1,876.70 $ 2,781.28 $ 6,460.59 $ 3,026.42 $ 14,769.92 $ 4,425.44 $ 5,151.52 $ 2,404.39 $ 5,019.86 $ 10,421.01 $ 4,860.83 $ 2,694.11 $ 2,421.63 $ 3,311.66 $ 1,596.91 $ 5,399.67 $ 17,605.59 $ 11,098.70 $ 3,674.03 $ 3,720.09 $ 2,472.64 $ 7,792.24 $ 3,489.88 $ 4,655.83 $ 10,242.50 $ 1,599.82 $ 6,015.34 $ 1,905.65 $ 707.70 $ 3,004.67 $ 18,290.04 $ 5,621.92 $ 5,547.71 $ 2,581.72 $ 7,024.64 $ 4,242.10 $ 4,286.90 $ 12,313.78 $ 8,217.27 $ 10,655.80 $ 3,620.78 $ 4,734.98 $ 1,820.41 $ 8,954.81 $ 4,177.90 $ 5,756.89 $ 12,919.48 $ 7,022.47 $ 6,823.60 $ 2,384.47 $ 3,169.19 $ 2,721.63 Use the hospital charges. Assume that the data represent a random sample from a larger population and do the following: a. Calculate the exact 95 percent upper and lower confidence limits for the population mean of LOS. b. Calculate the exact 95 percent upper and lower confidence limits for the population mean of charges. c. Calculate the exact 95 percent upper limit only for the population mean of charges-that is, the value below which 95 percent o d. Calculate the exact 95 percent upper and lower confidence limits for the population proportion, which is female. $ 3,034.14 $ 5,041.93 $ 8,118.92 $ 10,955.29 $ 5,363.25 $ 6,572.60 nt of all sample means will be respected to fall. E7.2 #1 Person 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 Complete Problem for Portions in Blue/ Full question in RED Waiting Time Proportion 4742 35 0.001202 25 0.001202 40 0.001202 43 46 46 35 48 41 30 29 43 50 38 27 21 36 34 54 57 36 46 45 33 29 40 39 34 51 0.001202 31 55 25 43 28 35 39 47 34 41 29 43 37 54 19 33 42 34 43 28 46 44 37 41 33 50 0.001202 40 43 36 39 43 37 30 44 43 21 28 25 39 52 43 28 42 28 52 29 50 40 45 45 31 55 0.001202 24 36 47 46 42 20 44 49 40 41 36 48 37 44 28 31 39 29 38 44 34 35 50 44 42 16 0.001202 27 28 31 40 34 44 50 43 36 25 48 36 37 56 42 57 22 40 31 20 34 44 42 43 42 36 0.001202 61 42 54 38 37 46 28 36 25 49 41 47 49 57 25 25 29 30 39 21 38 51 41 46 30 49 0.001202 28 47 47 49 47 26 29 43 20 28 25 51 53 46 40 38 40 35 34 53 22 12 43 48 27 27 0.001202 57 34 53 22 24 33 31 19 56 38 36 50 49 29 43 36 30 32 20 36 35 38 49 53 40 31 0.001202 25 23 30 22 42 47 26 32 40 57 42 51 43 43 53 37 48 37 48 45 29 30 43 25 19 21 0.001202 30 33 29 17 53 41 41 57 59 51 17 36 28 45 25 39 53 34 32 32 24 37 48 37 55 20 0.001202 33 36 31 44 29 34 27 30 29 35 36 43 30 53 38 36 48 57 28 51 43 28 40 34 39 28 0.001202 37 22 12 45 27 31 23 36 44 43 57 42 17 31 47 38 27 40 43 41 47 43 46 63 29 30 0.001202 35 31 58 43 34 54 49 41 56 30 21 33 42 40 27 54 54 43 28 45 40 45 30 39 31 17 0.001202 36 42 47 20 39 19 43 33 38 21 48 42 40 36 33 30 31 55 37 14 35 30 36 37 43 32 0.001202 29 31 31 38 47 27 51 57 63 56 31 21 37 35 29 28 47 26 42 29 22 47 44 38 47 34 0.001202 27 41 55 50 34 28 47 50 32 48 44 45 36 43 29 26 56 49 29 41 43 54 34 25 36 39 0.001202 38 34 26 45 37 32 30 47 40 38 36 40 50 36 29 49 41 37 36 44 40 33 35 40 39 34 0.001202 38 39 10 43 39 61 27 42 46 41 43 54 43 44 37 46 16 37 36 49 34 40 51 30 50 35 0.001202 36 41 29 45 39 38 39 39 31 16 40 49 49 48 34 50 36 45 31 29 56 39 38 44 33 34 0.001202 34 33 40 37 29 32 35 49 36 39 30 55 25 21 46 46 29 34 51 53 32 48 40 21 49 51 0.001202 21 32 38 30 39 34 30 42 17 22 33 49 42 31 35 52 30 47 28 54 48 25 40 42 56 37 0.001202 38 37 29 39 34 45 45 48 51 44 38 61 27 33 42 43 44 39 28 40 39 54 36 49 39 36 0.001202 31 52 31 35 34 53 36 46 50 39 29 38 39 43 40 14 36 29 51 28 35 42 38 28 37 33 0.001202 25 47 48 46 63 42 36 45 52 53 31 30 32 48 23 44 58 48 46 53 37 51 21 43 41 58 0.001202 30 24 40 36 50 46 10 43 62 40 32 39 30 30 42 50 28 36 40 25 34 37 19 32 31 47 0.001202 33 46 52 39 19 29 36 34 37 31 53 50 31 30 33 48 17 40 36 30 41 29 40 42 57 62 0.001202 67 47 20 48 34 44 43 31 44 45 28 37 48 33 37 43 43 24 44 43 41 33 54 29 46 31 0.001202 True mean 31 41 51 49 31 46 34 25 25 44 42 35 30 35 28 30 25 43 21 42 38 24 36 40 37 55 0.001202 46 41 36 32 48 52 53 36 48 34 45 34 43 34 51 48 43 46 34 32 39 36 41 22 47 22 0.001202 6.03 3b 53 33 43 49 36 30 42 25 53 31 32 40 32 46 43 40 31 31 48 31 54 33 34 55 30 43 0.001202 Mean 36.13333 37.9 37.5 38.8 38 38.23333 36.13333 39.93333 41.66667 38.36667 36.3 41.7 37.2 40.4 35.83333 39.76667 38.06667 38.03333 37.33333 37.56667 38.1 37.7 39.7 39.13333 39 47 0.001202 StDev 11.06325 8.256032 12.56089 9.060715 9.299611 10.19697 9.67661 9.295655 12.05257 10.8166 9.078774 9.385058 9.034035 9.114596 8.530203 10.34469 11.66466 8.193704 8.766446 10.96604 8.281054 9.685218 7.710942 9.807574 9.131227 57 0.001202 StError 2.019863 1.507338 2.293294 1.654253 1.697869 1.861703 1.766699 1.697147 2.200488 1.974832 1.65755 1.713469 1.649382 1.66409 1.557395 1.888674 2.129666 1.495959 1.600527 2.002116 1.511907 1.768271 1.407819 1.79061 1.667126 37 0.001202 tinv() 33 0.001202 7.02 1a Upper 45 0.001202 Lower 34 0.001202 7.02 1b Included? 46 0.001202 7.02 1c # and p (TRUE) 24 0.001202 7.02 1d 30 0.001202 23 0.001202 34 0.001202 38 0.001202 38 0.001202 35 0.001202 Mean of Means 6.03 3c 6.03 3d The distribution is approximately normal 60 0.001202 38.27767 -3 33.00289 0 21 0.001202 StDev of Means -2 34.76115 2 40 31 0.001202 1.758258 -1 36.51941 16 35 12 0.001202 0 38.27767 34 30 52 0.001202 1 40.03592 32 25 25 0.001202 2 41.79418 15 20 31 0.001202 3 43.55244 1 15 46 0.001202 4 45.3107 0 10 43 0.001202 5 47 0.001202 0 44 0.001202 -3 -2 -1 0 1 2 3 4 24 0.001202 27 0.001202 45 0.001202 Questions 41 0.001202 29 0.001202 a. Calculate the exact 95 percent upper lower confidence limits for each sample. 36 0.001202 b. Use the =AND( ) statement, as given in Figure 7.3, to determine whether the confidence limits for each sample contain the true population mean. 39 0.001202 c. Use =COUNTIF( ) to determine whether the proportion of samples of the one hundred actually contains the true mean of the population within the 95 percent limits. 44 0.001202 d. Can you account for the result you got in (c)? 39 0.001202 29 0.001202 57 0.001202 43 0.001202 39 0.001202 46 0.001202 47 0.001202 32 0.001202 29 0.001202 49 0.001202 26 0.001202 22 0.001202 45 0.001202 44 0.001202 60 0.001202 52 0.001202 51 0.001202 39 0.001202 38 0.001202 43 0.001202 38 0.001202 27 0.001202 20 0.001202 46 0.001202 42 0.001202 44 0.001202 40 0.001202 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 28 50 35 30 30 34 33 33 46 43 32 51 20 44 37 38 31 33 46 46 43 45 54 41 44 57 35 48 39 49 37 30 49 32 43 43 35 34 24 58 32 39 36 66 51 47 51 40 43 36 26 51 35 25 46 46 42 42 32 45 43 49 10 43 53 21 38 52 55 40 39 57 38 31 47 38 48 42 53 37 28 23 12 39 41 38 40 41 53 39 27 24 40 48 23 32 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 43 36 35 36 34 30 44 39 51 41 39 40 40 38 26 40 39 46 31 44 40 39 47 56 25 26 44 50 29 17 29 40 42 28 29 43 39 33 39 29 29 48 54 31 36 39 56 44 55 40 54 32 28 50 47 21 51 36 27 19 30 43 47 37 37 40 34 47 33 61 45 44 28 47 52 31 35 25 52 48 40 16 43 43 50 28 50 32 31 21 52 28 53 26 34 25 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 54 38 41 48 57 37 28 32 46 47 43 23 24 37 32 32 47 30 37 36 53 25 29 36 27 24 16 44 35 42 18 50 19 33 28 37 39 55 33 30 31 44 51 24 48 54 31 39 30 45 40 38 28 35 45 38 48 28 46 50 26 42 20 39 48 48 39 30 44 43 45 29 44 54 40 34 40 56 14 38 37 48 50 54 20 46 42 45 43 37 55 43 38 38 37 21 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 42 40 45 36 46 51 57 25 44 36 31 45 61 51 40 33 36 27 39 35 44 25 43 48 29 42 43 48 36 40 34 43 54 36 28 29 45 54 32 30 48 40 42 64 32 30 50 35 24 49 25 34 24 27 44 39 21 58 40 52 38 36 38 19 31 52 40 34 32 27 50 63 47 37 29 37 35 34 47 35 41 46 40 22 38 45 36 22 22 30 41 32 59 36 47 50 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 33 20 29 39 41 47 17 31 40 39 37 36 53 46 25 33 35 29 36 39 28 46 36 45 30 41 25 61 46 27 53 35 24 34 41 31 44 36 43 19 27 53 40 47 26 25 36 36 48 48 35 43 48 30 31 35 43 21 50 57 38 25 38 53 40 51 49 42 30 34 51 43 45 29 17 37 48 47 33 31 41 27 43 22 53 54 31 51 45 47 27 51 34 50 22 29 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 68 34 34 45 35 21 38 47 47 35 42 56 42 39 33 41 38 54 67 20 39 55 48 40 50 48 37 30 28 26 13 26 45 46 50 34 25 19 33 34 48 32 48 41 47 49 44 41 36 42 33 46 37 31 30 56 42 39 48 29 39 36 43 56 34 53 44 54 58 47 58 37 38 53 31 40 27 38 52 41 39 30 19 32 22 49 38 50 49 47 44 46 41 37 35 31 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 37 57 38 53 31 55 25 42 43 27 63 44 28 23 21 34 22 25 20 31 35 49 45 37 36 29 51 48 32 55 28 46 53 41 31 36 45 19 30 41 34 26 40 46 21 34 30 42 36 33 40 28 29 34 57 20 37 42 41 54 21 41 28 42 45 29 36 33 25 42 42 37 43 41 61 29 42 17 37 48 29 34 32 34 46 37 56 34 26 44 37 36 22 30 32 30 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 25 37 49 31 37 37 47 36 63 14 38 31 37 51 42 35 25 34 30 50 33 34 38 32 49 39 38 37 27 39 36 26 31 44 49 45 43 28 49 25 45 23 49 53 41 47 41 23 21 47 49 41 34 29 32 26 30 42 28 57 45 36 34 33 42 51 22 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 49 31 37 37 46 28 34 48 31 39 48 32 32 37 41 41 32 20 41 42 34 48 38 31 47 53 37 29 43 42 48 40 56 37 33 30 53 37 42 34 34 33 29 37 43 43 57 43 19 38 44 34 48 46 28 34 25 32 17 38 33 42 26 38 47 41 39 38 40 35 48 28 25 38 36 32 37 42 68 62 54 41 37 39 39 50 45 68 49 43 54 37 21 26 45 35 38 36 27 40 24 47 24 58 24 43 36 43 42 38 29 64 50 55 34 28 29 37 34 22 50 39 25 41 28 48 45 46 42 37 35 30 28 43 37 49 39 29 35 45 39 36 26 29 40 28 30 46 45 47 31 31 51 42 50 10 40 27 36 46 45 25 46 19 36 40 55 58 56 54 47 53 20 36 66 47 48 34 27 25 35 49 55 52 37 22 13 35 57 31 47 45 49 30 38 34 54 50 43 35 31 55 21 51 52 30 31 46 33 53 41.3 42.23333 37.2 38.83333 36.83333 38.06667 39.26667 9.516411 11.41289 9.823968 10.57024 10.09979 8.283483 12.27538 1.737451 2.083699 1.793603 1.929852 1.843961 1.51235 2.241168 50 30 29 37 26 36 16 21 40 40 36 35 47 53 34 37 35 33 57 32 55 30 28 58 27 32 36 40 48 25 55 40 48 53 41 45 41 40 47 30 20 30 25 35 27 25 28 36 42 26 46 51 22 40 61 32 41 29 40 53 50 48 21 42 45 46 30 50 44 45 21 33 37 39 35 37 47 28 41 53 60 25 52 50 37 22 39 39 33 36 33 42 44 27 19 31 31 31 50 32 57 45 40 50 38 39 44 38 41 30 55 41 45 51 28 29 44 52 46 51 41 30 63 38 37 40 25 42 30 38 34 47 53 32 37 53 34 37 34 43 51 48 34 38 48 34 53 47 57 44 19 28 46 49 14 37 47 45 54 37 38 48 34 57 53 39 35 21 21 53 30 26 37 40 40 25 36 45 61 30 31 35 41 42 58 26 44 46 48 25 31 38 54 31 48 37 29 44 36 23 29 44 21 46 54 20 35 53 30 34 37 47 29 45 32 66 26 38 47 12 32 44 26 39 40 37 45 36 42 30 34 27 39 23 26 40 48 20 27 41 40 30 46 30 39 43 46 36 20 14 19 56 37 35 42 38 44 55 37 29 54 57 41 54 42 50 22 53 39 50 36 23 21 54 21 28 44 12 25 36 54 37 46 58 44 26 28 39 35 35 38 36 27 62 24 33 21 41 39 44 37 31 29 57 24 45 36 49 54 30 37 52 41 48 42 20 43 29 28 41 43 34 37 47 55 38 43 48 44 16 30 50 53 30 23 32 38 51 41 33 26 49 43 46 28 47 28 43 30 46 51 30 52 37 51 43 47 57 39 37 21 47 35 32 52 43 38 12 37 36 52 49 26 26 44 44 28 53 49 36 30 32 32 47 54 33 45 34 53 41 45 63 47 45 46 53 34 30 48 37 34 34 25 30 43 39 31 34 34 32 50 39 28 35 37 55 40 41 35 37 42 40 34 42 31 23 46 51 54 50 45 40 53 21 43 51 42 50 32 36 46 36 30 32 24 53 35 53 25 31 50 40 30 50 31 43 29 22 36 42 27 23 39 34 42 42 30 51 27 51 54 53 19 49 22 43 39 50 29 25 25 31 38 41 39 47 31 36 31 44 27 38 36 22 20 20 26 56 45 31 57 37 54 50 31 50 47 52 41 46 39.1 38.9 35.7 40.4 40.06667 38.7 34.53333 39.1 41.36667 37.63333 39.4 37.73333 38.13333 39.33333 41.2 35.13333 40.03333 11.11181 11.55601 9.61016 11.02849 9.598611 10.11366 9.456738 9.83081 10.09433 8.63227 10.95949 12.31185 11.43417 9.753278 10.37703 10.86828 8.65222 2.02873 2.109829 1.754567 2.013518 1.752459 1.846494 1.726556 1.794852 1.842963 1.57603 2.000919 2.247826 2.087584 1.780697 1.894578 1.984268 1.579672 31 43 20 43 37 38 57 54 40 56 61 27 58 53 35 38 45 52 43 37 26 46 31 36 56 34 43 27 27 31 48 49 47 45 46 22 44 24 34 22 41 39 31 22 51 47 38 23 29 44 48 46 43 28 51 28 22 31 44 39 53 16 26 50 40 34 53 19 50 51 51 25 48 32 37 48 49 39 34 40 39 30 28 45 43 48 45 54 34 57 39 23 31 39 31 49 34 46 36 45 43 42 39 34 36 51 26 47 33 33 38 28 34 54 62 30 50 42 37 21 35 45 37 26 52 39 45 32 33 39 56 37 30 39 45 31 39 36 48 31 29 28 44 22 30 40 29 30 25 49 38 27 54 27 42 42 31 26 44 39 25 30 56 37 39 42 46 36 47 44 38 33 50 49 32 54 20 31 34 43 26 24 34 48 29 44 49 44 17 25 63 27 37 35 44 40 20 27 37 25 45 29 24 43 47 47 42 41 49 57 36.6 38.1 40.23333 39.76667 38.13333 41.33333 35.76667 10.5458 10.73939 9.525586 9.4017 9.511276 10.07329 10.70509 1.92539 1.960735 1.739126 1.716508 1.736513 1.839124 1.954472 27 36 20 35 41 42 46 33 63 28 28 17 33 50 39 34 44 37 56 23 39 43 54 42 37 31 44 34 42 35 30 40 55 38 23 32 26 38 46 39 50 33 34 20 43 51 57 51 26 47 49 41 49 30 44 27 30 44 49 29 57 37 45 39 47 41 44 33 43 42 21 37 37 35 41 40 36 47 41 40 34 43 28 47 61 42 33 21 39 49 53 41 30 36 48 44 40 41 36 39 25 45 31 39 42 35 20 34 44 32 29 67 26 48 32 40 35 37 39 24 25 47 27 42 41 26 47 54 39 57 42 56 21 22 25 39 33 46 25 44 46 53 29 45 39 46 38 28 31 39 46 51 48 44 47 29 38 44 21 32 48 36 45 42 25 37 39 51 36 40 28 48 49 29 43 25 53 29 28 33 31 16 48 33 36 31 41 38 31 29 51 29 45 43 46 30 30 48 42 60 41 42 30 39 34 30 39 29 26 50 40 29 51 48 31 32 50 40 31 54 49 52 30 10 24 53 46 44 19 32 17 57 26 45 30 35 30 43 34 38 32 37 42 37 29 41 35 47 34 36 42 45 53 34 38 50 41 44 34 52 31 38 21 36 37 45 39 42 17 41 38 38 30 48 49 51 26 37 24 36 39 38 37 25 45 27 42 39 42 47 42 33 33 28 35 29 63 42 27 25 43 52 24 35 47 28 31 37 52 51 44 50 46 30 39 29 56 27 48 33 38 40 58 30 38 46 46 48 63 44 49 32 50 32 37 30 43 46 34 35 12 37 44 29 37 43 38 44 44 24 30 50 48 41 42 40 35 44 57 25 42 34 25 38 40 23 39 41 22 24 19 38 43 53 32 45 32 28 32 39 47 17 57 44 28 26 47 25 39 36 35 55 50 34 40 50 37 36 25 48 48 51 38 46 27 48 39 39 35 48 48 18 38 51 54 39 51 31 53 19 29 43 37 30 41 24 21 42 34 43 50 22 44 28 43 55 44 32 36 45 33 44 21 61 35 23 41 48 56 43 36 36 36 28 36 55 36 51 30 45 16 36 34 54 34 40 57 23 35 31 36 42 42 28 42 40 22 21 43 30 41 43 30 42 45 27 45 54 33 56 28 43 28 29 51 34 38 47 38 21 44 51 19 27 34 38 50 48 39 41 34 30 39 21 25 27 26 46 40 31 44 37 46 40 44 50 42 21 46 28 32 43 41 39 40 21 56 42 36 41 46 33 46 36 32 22 45 14 22 38 27 48 29 29 40 37 66 29 48 50 32 27 48 46 30 47 36 36 21 48 29 39 52 16 47 48 49 60 34 37 56 25 39 37 48 32 37 40 56 35 29 45 34 45 34 55 14 51 48 39 46 34 37 31 44 35 25 38 57 54 49 38 49 51 41 36 46 40 50 16 30 47 27 39 57 19 40 29 36 43 45 30 40 53 29 25 47 40 38 38 42 21 47 33 25 37 19 27 36 53 54 43 34 16 27 46 47 22 34 33 21 52 17 38 24 28 39 24 27 20 32 35 27 30 18 23 37 42 53 48 33 61 44 52 57 34 39 39 33 35 44 34 34 46 42 43 31 33 43 34 30 43 40 48 47 41 55 43 24 34 34 42 46 38 48 35 48 34 34 40 62 39 23 31 34 36 39 45 33 50 46 46 30 35 50 20 28 25 30 39 46 48 46 57 30 26 27 32 21 43 58 36 34 31 38 25 29 26 37 37 30 50 38 42 17 43 46 56 27 32 37 25 32 36 40 50 14 40 26 21 33 45 31 30 53 37 54 34 41 32 30 28 42 27 67 49 34 22 29 26 36 41 58 47 49 51 39 27 52 53 25 35 38 44 20 32 32 39 24 43 40 58 35 45 29 36 39 22 47 42 27 54 35 62 54 19 48 27 46 39 14 29 35 44 34 33 50 34 22 45 49 24 54 37 40 16 50 26 34 27 34 16 38 43 46 33 30 53 26 31 48 34 48 38 44 49 57 54 53 39 42 19 42 37 40 48 44 34 44 32 29 25 49 39 38 37 48 25 53 30 29 29 33 28 42 47 52 36 55 14 42 28 29 36 13 28 38 34 36 40 46 50 55 54 39 35 34 53 36 46 37.36667 39.93333 38 34.86667 38.6 37.6 39.1 39.46667 36.66667 38.33333 38.23333 37.46667 36 38.4 36.93333 37.7 38.3 39.43333 37.06667 40.2 35.5 38.66667 39.5 36.1 35.8 36.6 36.7 40.83333 38.96667 40.83333 40.83333 7.203846 10.91324 10.31236 9.525767 9.597413 8.092568 10.45631 10.43777 11.77178 11.67471 9.814428 11.1068 8.229468 10.65315 9.157373 11.01144 8.128918 10.13592 11.77939 10.77161 10.29814 9.732042 10.88419 10.34025 10.4894 6.916248 9.773821 10.63852 9.007596 11.24978 12.22514 1.315236 1.992476 1.882771 1.739159 1.75224 1.477494 1.909053 1.905668 2.149222 2.131501 1.791861 2.027814 1.502488 1.944991 1.6719 2.010404 1.484131 1.850557 2.150612 1.966618 1.880175 1.77682 1.987172 1.887862 1.915094 1.262728 1.784447 1.94232 1.644554 2.053919 2.231995 34 31 30 23 32 34 33 39 37 53 34 22 47 37 39 46 22 44 41 57 53 41 46 47 31 17 37 33 21 32 29 45 40 37 40 35 25 46 49 61 32 18 36 25 33 32 40 38 40 41 43 53 45 37 39 34 46 25 45 30 32 43 28 21 36 49 31 35 33 20 37 31 40 26 27 29 25 49 34 44 21 16 28 51 45 40 39 33 21 32 45 23 25 55 48 45 53 48 42 32 36 55 46 37 14 30 32 32 41 39 39 36 28 39 36 49 54 46 12 40 31 31 44 30 43 36 30 48 45 24 36 38 27 35 45 26 35 35 29 28 53 36 28 48 42 56 12 28 52 31 34 35 48 50 48 27 42 31 43 41 50 61 49 34 46 43 45 47 51 50 28 30 31 43 52 45 48 34 40 37 49 39 40 35 28 68 45 13 20 39 17 34 47 36 38 57 55 38 46 42 24 35 33 47 34 43 16 45 38 39 44 45 44 31 36 34 45 45 41 50 41 41 40 44 34 40 25 32 40 28 32 41 25 45 22 39 45 38 34 38 27 39 47 34 33 17 52 56 32 34 38 49 37 20 36 43 20 21 27 40 43 29 29 57 37 45 44 43 25 50 32 21 21 49 34 12 47 36 26 38 40 41 33 42 47 30 48 36 22 43 49 48 42 42 12 12 28 44 39 23 42 37 12 35 25 49 38 49 42 45 47 47 42 26 50 42 50 43 37 46 20 21 50 53 33 28 41 40 48 45 49 41 29 26 44 67 47 36 43 31 54 39 29 57 34 39 34 34 22 40 46 34 51 21 21 20 31 54 29 34 41 32 53 54 46 44 39 38 44 22 45 34 27 28 51 30 31 29 54 32 28 39 31 57 41 48 50 56 29 52 39.83333 36.03333 35.4 35.66667 38.16667 37.93333 39.03333 38.43333 34.53333 36.5 40 37.4 40.2 10.9673 8.857038 11.38238 12.44113 8.800797 11.93064 9.499486 5.354233 9.500393 9.496823 11.51611 11.66663 10.30032 2.002345 1.617067 2.078129 2.271428 1.606798 2.178227 1.734361 0.977545 1.734527 1.733875 2.102544 2.130026 1.880572 Calculate the approximate size required for each of the following at 95 percent confidence: a. Standard deviation = 10, (ME) = 0.5, two tail b. Standard deviation = 10, (ME) = 0.5, one tail c. Standard deviation = 10, (ME) = 1.5, two tail d. Standard deviation = 10, (ME) = 1.5, one tail e. Standard deviation = 35, (ME) = 5, two tail f. Standard deviation = 35, (ME) = 5, one tail g. Standard deviation = $3,200, (ME) = 400, two tail h. Standard deviation = $3,200, (ME) = 400, one tail 2. A hospital administrator wants to measure average cost per stay in his institution. He is willing to be within $200 of the true value with a probability of 95 percent. An initial invest sample of ten records determined that the standard deviation of cost was $3,987. How large a sample will need to be taken to meet the administrator's needs? ial investigation of a random Charges $ 2,426.48 $ 6,815.61 $ 7,596.68 $ 6,450.77 $ 3,542.79 $ 2,590.86 $ 5,082.83 $ 3,580.55 $ 11,045.79 $ 19,708.11 $ 8,953.38 $ 7,000.21 $ 5,330.24 $ 6,864.63 $ 4,318.13 $ 6,424.30 $ 5,184.53 $ 1,871.78 $ 11,179.97 $ 3,405.38 $ 1,731.73 $ 5,384.92 $ 5,216.91 $ 2,489.65 $ 8,244.25 $ 3,548.05 $ 4,713.26 $ 5,804.21 $ 2,945.22 $ 1,035.75 $ 17,005.45 $ 4,637.96 $ 17,480.97 $ 5,029.09 $ 3,078.99 $ 2,146.99 $ 5,482.93 $ 1,078.56 $ 9,931.21 $ 2,451.69 $ 2,834.68 $ 1,547.81 $ 1,876.70 $ 2,781.28 $ 6,460.59 $ 3,026.42 $ 14,769.92 $ 4,425.44 $ 5,151.52 $ 2,404.39 $ 5,019.86 $ 10,421.01 $ 4,860.83 $ 2,694.11 $ 2,421.63 $ 3,311.66 $ 1,596.91 $ 5,399.67 $ 17,605.59 $ 11,098.70 $ 3,674.03 $ 3,720.09 $ 2,472.64 $ 7,792.24 $ 3,489.88 $ 4,655.83 $ 10,242.50 $ 1,599.82 $ 6,015.34 $ 1,905.65 $ 707.70 $ 3,004.67 $ 18,290.04 $ 5,621.92 $ 5,547.71 $ 2,581.72 $ 7,024.64 $ 4,242.10 $ 4,286.90 $ 12,313.78 $ 8,217.27 $ 10,655.80 $ 3,620.78 $ 4,734.98 $ 1,820.41 $ 8,954.81 $ 4,177.90 $ 5,756.89 $ 12,919.48 $ 7,022.47 $ 6,823.60 $ 2,384.47 $ 3,169.19 $ 2,721.63 Sex F F F M F F F M M F F M M F M F F F F F F F M F F F F F F M M F F M M M F M F F F F F M F F F F F F M F M F M F M F M F F M F F F F F F M F M M F F F M M M M F M F F M F F M F F M F F M F LOS 4 8 10 5 3 2 5 6 6 14 11 5 6 3 3 7 6 3 11 2 2 2 7 4 10 6 3 6 6 1 3 3 5 5 3 2 6 1 10 2 2 2 3 2 6 4 10 7 4 1 2 9 2 3 4 2 1 5 12 7 4 4 1 7 2 4 14 1 10 2 1 2 10 3 7 2 9 3 3 2 11 16 3 5 1 8 5 2 10 9 7 4 5 2 Use the hospital charges. Assume that the data represent a random sample from a larger population and do the following: a. Calculate the exact 95 percent upper and lower confidence limits for the population mean of LOS. b. Calculate the exact 95 percent upper and lower confidence limits for the population mean of charges. c. Calculate the exact 95 percent upper limit only for the population mean of charges-that is, the value below which 95 percent o d. Calculate the exact 95 percent upper and lower confidence limits for the population proportion, which is female. a) b) C) d) No data given Confidence interval = Upper limit = No data given $ 5,000.67 to $ 6,466.72 $ 6,594.82 $ 3,034.14 $ 5,041.93 $ 8,118.92 $ 10,955.29 $ 5,363.25 $ 6,572.60 F F M M M M 5 3 7 9 7 5 ng: 95 percent of all sample means will be respected to fall. E7.2 #1 Person 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 Complete Problem for Portions in Blue/ Full question in RED Waiting Time Proportion 4742 35 0.001202 25 0.001202 40 0.001202 43 46 46 35 48 41 30 29 43 50 38 27 21 51 0.001202 31 55 25 43 28 35 39 47 34 41 29 43 37 50 0.001202 40 43 36 39 43 37 30 44 43 21 28 25 39 55 0.001202 24 36 47 46 42 20 44 49 40 41 36 48 37 16 0.001202 27 28 31 40 34 44 50 43 36 25 48 36 37 36 0.001202 61 42 54 38 37 46 28 36 25 49 41 47 49 49 0.001202 28 47 47 49 47 26 29 43 20 28 25 51 53 27 0.001202 57 34 53 22 24 33 31 19 56 38 36 50 49 31 0.001202 25 23 30 22 42 47 26 32 40 57 42 51 43 21 0.001202 30 33 29 17 53 41 41 57 59 51 17 36 28 20 0.001202 33 36 31 44 29 34 27 30 29 35 36 43 30 28 0.001202 37 22 12 45 27 31 23 36 44 43 57 42 17 30 0.001202 35 31 58 43 34 54 49 41 56 30 21 33 42 17 0.001202 36 42 47 20 39 19 43 33 38 21 48 42 40 32 0.001202 29 31 31 38 47 27 51 57 63 56 31 21 37 34 0.001202 27 41 55 50 34 28 47 50 32 48 44 45 36 39 0.001202 38 34 26 45 37 32 30 47 40 38 36 40 50 34 0.001202 38 39 10 43 39 61 27 42 46 41 43 54 43 35 0.001202 36 41 29 45 39 38 39 39 31 16 40 49 49 34 0.001202 34 33 40 37 29 32 35 49 36 39 30 55 25 51 0.001202 21 32 38 30 39 34 30 42 17 22 33 49 42 37 0.001202 38 37 29 39 34 45 45 48 51 44 38 61 27 36 0.001202 31 52 31 35 34 53 36 46 50 39 29 38 39 33 0.001202 25 47 48 46 63 42 36 45 52 53 31 30 32 58 0.001202 30 24 40 36 50 46 10 43 62 40 32 39 30 47 0.001202 33 46 52 39 19 29 36 34 37 31 53 50 31 62 0.001202 67 47 20 48 34 44 43 31 44 45 28 37 48 31 0.001202 True mean 38.4014423077 31 41 51 49 31 46 34 25 25 44 42 35 30 55 0.001202 46 41 36 32 48 52 53 36 48 34 45 34 43 22 0.001202 6.03 3b 53 33 43 49 36 30 42 25 53 31 32 40 32 43 0.001202 Mean 36.13333 37.9 37.5 38.8 38 38.23333 36.13333 39.93333 41.66667 38.36667 36.3 41.7 37.2 47 0.001202 StDev 11.06325 8.256032 12.56089 9.060715 9.299611 10.19697 9.67661 9.295655 12.05257 10.8166 9.078774 9.385058 9.034035 57 0.001202 StError 2.019863 1.507338 2.293294 1.654253 1.697869 1.861703 1.766699 1.697147 2.200488 1.974832 1.65755 1.713469 1.649382 37 0.001202 tinv() 2.04523 2.04523 2.04523 2.04523 2.04523 2.04523 2.04523 2.04523 2.04523 2.04523 2.04523 2.04523 2.04523 33 0.001202 7.02 1a Upper 40.26442 40.98285 42.19031 42.18333 41.47253 42.04094 39.74664 43.40439 46.16717 42.40565 39.69007 45.20444 40.57336 45 0.001202 Lower 32.00225 34.81715 32.80969 35.41667 34.52747 34.42572 32.52003 36.46228 37.16616 34.32768 32.90993 38.19556 33.82664 34 0.001202 7.02 1b Included? Yes No Yes No No No No No No No No Yes Yes 46 0.001202 7.02 1c # and p (TRUE) 24 0.24 24 0.001202 7.02 1d As we computed 95% confidence intervals so 95% of them should contain the mean which is not happening here. Thus I cant account for the results obtained. 30 0.001202 23 0.001202 34 0.001202 38 0.001202 38 0.001202 35 0.001202 Mean of Means 6.03 3c 6.03 3d The distribution is approximately normal 60 0.001202 38.27767 -3 33.00289 0 21 0.001202 StDev of Means -2 34.76115 2 40 31 0.001202 1.758258 -1 36.51941 16 35 12 0.001202 0 38.27767 34 30 52 0.001202 1 40.03592 32 25 25 0.001202 2 41.79418 15 20 31 0.001202 3 43.55244 1 15 46 0.001202 4 45.3107 0 10 43 0.001202 5 47 0.001202 0 44 0.001202 -3 -2 -1 0 1 2 3 4 24 0.001202 27 45 41 29 36 39 44 39 29 57 43 39 46 47 32 29 49 26 22 45 44 60 52 51 39 38 43 38 27 20 46 42 44 40 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 36 54 52 44 56 57 46 29 43 45 53 31 40 36 35 43 36 44 48 21 31 33 43 48 30 30 33 35 34 46 40.4 9.114596 1.66409 2.04523 43.80345 36.99655 No Questions a. Calculate the exact 95 percent upper lower confidence limits for each sample. b. Use the =AND( ) statement, as given in Figure 7.3, to determine whether the confidence limits for each sample contain the true population mean. c. Use =COUNTIF( ) to determine whether the proportion of samples of the one hundred actually contains the true mean of the population within the 95 percent limits. d. Can you account for the result you got in (c)? 34 19 43 28 42 25 40 43 53 25 38 47 27 33 29 29 29 37 34 46 35 42 40 23 42 33 37 28 51 43 35.83333 8.530203 1.557395 2.04523 39.01856 32.6481 Yes 54 33 28 31 57 25 38 36 37 39 36 38 54 30 28 26 49 46 50 46 52 43 14 44 50 48 43 30 48 40 39.76667 10.34469 1.888674 2.04523 43.62944 35.9039 No 57 42 42 39 22 29 40 30 48 53 48 27 54 31 47 56 41 16 36 29 30 44 36 58 28 17 43 25 43 31 38.06667 11.66466 2.129666 2.04523 42.42232 33.71101 No 36 34 28 29 40 30 35 32 37 34 57 40 43 55 26 49 37 37 45 34 47 39 29 48 36 40 24 43 46 31 38.03333 8.193704 1.495959 2.04523 41.09291 34.97375 No 46 43 52 38 31 39 34 20 48 32 28 43 28 37 42 29 36 36 31 51 28 28 51 46 40 36 44 21 34 48 37.33333 8.766446 1.600527 2.04523 40.60678 34.05989 No 45 33 29 40 39 28 46 44 37 41 29 50 40 45 45 44 34 35 50 44 20 34 44 42 43 21 38 51 41 46 53 22 12 43 48 36 35 38 49 53 45 29 30 43 25 32 24 37 48 37 51 43 28 40 34 41 47 43 46 63 45 40 45 30 39 14 35 30 36 37 29 22 47 44 38 41 43 54 34 25 44 40 33 35 40 49 34 40 51 30 29 56 39 38 44 53 32 48 40 21 54 48 25 40 42 40 39 54 36 49 28 35 42 38 28 53 37 51 21 43 25 34 37 19 32 30 41 29 40 42 43 41 33 54 29 42 38 24 36 40 32 39 36 41 22 31 54 33 34 55 37.56667 38.1 37.7 39.7 39.13333 10.96604 8.281054 9.685218 7.710942 9.807574 2.002116 1.511907 1.768271 1.407819 1.79061 2.04523 2.04523 2.04523 2.04523 2.04523 41.66145 41.1922 41.31652 42.57931 42.79554 33.47188 35.0078 34.08348 36.82069 35.47113 No No Yes No Yes 34 33 31 42 42 30 27 40 19 55 39 29 31 43 47 36 39 50 33 49 56 39 37 41 31 57 46 37 47 30 39 9.131227 1.667126 2.04523 42.40966 35.59034 Yes 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 28 50 35 30 30 34 33 33 46 43 32 51 20 44 37 38 31 33 46 46 43 45 54 41 44 57 35 48 39 49 37 30 49 32 43 43 35 34 24 58 32 39 36 66 51 47 51 40 43 36 26 51 35 25 46 46 42 42 32 45 43 49 10 43 53 21 38 52 55 40 39 57 38 31 47 38 48 42 53 37 28 23 12 39 41 38 40 41 53 39 27 24 40 48 23 32 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 43 36 35 36 34 30 44 39 51 41 39 40 40 38 26 40 39 46 31 44 40 39 47 56 25 26 44 50 29 17 29 40 42 28 29 43 39 33 39 29 29 48 54 31 36 39 56 44 55 40 54 32 28 50 47 21 51 36 27 19 30 43 47 37 37 40 34 47 33 61 45 44 28 47 52 31 35 25 52 48 40 16 43 43 50 28 50 32 31 21 52 28 53 26 34 25 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 54 38 41 48 57 37 28 32 46 47 43 23 24 37 32 32 47 30 37 36 53 25 29 36 27 24 16 44 35 42 18 50 19 33 28 37 39 55 33 30 31 44 51 24 48 54 31 39 30 45 40 38 28 35 45 38 48 28 46 50 26 42 20 39 48 48 39 30 44 43 45 29 44 54 40 34 40 56 14 38 37 48 50 54 20 46 42 45 43 37 55 43 38 38 37 21 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 42 40 45 36 46 51 57 25 44 36 31 45 61 51 40 33 36 27 39 35 44 25 43 48 29 42 43 48 36 40 34 43 54 36 28 29 45 54 32 30 48 40 42 64 32 30 50 35 24 49 25 34 24 27 44 39 21 58 40 52 38 36 38 19 31 52 40 34 32 27 50 63 47 37 29 37 35 34 47 35 41 46 40 22 38 45 36 22 22 30 41 32 59 36 47 50 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 33 20 29 39 41 47 17 31 40 39 37 36 53 46 25 33 35 29 36 39 28 46 36 45 30 41 25 61 46 27 53 35 24 34 41 31 44 36 43 19 27 53 40 47 26 25 36 36 48 48 35 43 48 30 31 35 43 21 50 57 38 25 38 53 40 51 49 42 30 34 51 43 45 29 17 37 48 47 33 31 41 27 43 22 53 54 31 51 45 47 27 51 34 50 22 29 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 68 34 34 45 35 21 38 47 47 35 42 56 42 39 33 41 38 54 67 20 39 55 48 40 50 48 37 30 28 26 13 26 45 46 50 34 25 19 33 34 48 32 48 41 47 49 44 41 36 42 33 46 37 31 30 56 42 39 48 29 39 36 43 56 34 53 44 54 58 47 58 37 38 53 31 40 27 38 52 41 39 30 19 32 22 49 38 50 49 47 44 46 41 37 35 31 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 37 57 38 53 31 55 25 42 43 27 63 44 28 23 21 34 22 25 20 31 35 49 45 37 36 29 51 48 32 55 28 46 53 41 31 36 45 19 30 41 34 26 40 46 21 34 30 42 36 33 40 28 29 34 57 20 37 42 41 54 21 41 28 42 45 29 36 33 25 42 42 37 43 41 61 29 42 17 37 48 29 34 32 34 46 37 56 34 26 44 37 36 22 30 32 30 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 25 37 49 31 37 37 47 36 63 14 38 31 37 51 42 35 25 34 30 50 33 34 38 32 49 39 38 37 27 39 36 26 31 44 49 45 43 28 49 25 45 23 49 53 41 47 41 23 21 47 49 41 34 29 32 26 30 42 28 57 45 36 34 33 42 51 22 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 0.001202 49 48 41 48 43 30 29 38 25 38 48 42 39 37 27 43 50 22 45 43 39 46 50 25 56 47 55 31 54 51 41.3 9.516411 1.737451 2.04523 44.85349 37.74651 No 31 31 41 38 42 53 37 44 32 47 28 68 50 21 40 36 55 50 46 37 36 45 10 46 54 48 52 47 50 52 42.23333 11.41289 2.083699 2.04523 46.49498 37.97169 No 37 39 32 31 48 37 43 34 17 41 25 62 45 26 24 43 34 39 42 49 26 47 40 19 47 34 37 45 43 30 37.2 9.823968 1.793603 2.04523 40.86833 33.53167 No 37 48 20 47 40 42 43 48 38 39 38 54 68 45 47 42 28 25 37 39 29 31 27 36 53 27 22 49 35 31 38.83333 10.57024 1.929852 2.04523 42.78032 34.88634 No 46 32 41 53 56 34 57 46 33 38 36 41 49 35 24 38 29 41 35 29 40 31 36 40 20 25 13 30 31 46 36.83333 10.09979 1.843961 2.04523 40.60466 33.06201 No 28 32 42 37 37 34 43 28 42 40 32 37 43 38 58 29 37 28 30 35 28 51 46 55 36 35 35 38 55 33 38.06667 8.283483 1.51235 2.04523 41.15977 34.97356 No 34 50 30 29 37 33 57 32 34 41 45 41 29 51 22 40 33 44 45 21 33 22 39 39 19 40 50 38 34 51 41 30 26 34 37 34 35 49 14 37 37 30 26 37 39 46 48 25 54 54 20 35 36 44 26 39 24 27 41 40 64 38 44 55 34 21 54 21 48 35 38 36 28 36 49 54 45 47 55 38 30 26 49 43 42 57 39 37 45 44 44 28 58 63 47 45 66 34 32 50 49 23 46 51 57 30 32 24 34 42 27 23 21 39 50 29 53 22 20 20 39.26667 39.1 38.9 35.7 12.27538 11.11181 11.55601 9.61016 2.241168 2.02873 2.109829 1.754567 2.04523 2.04523 2.04523 2.04523 43.85037 43.24922 43.21509 39.28849 34.68296 34.95078 34.58491 32.11151 Yes No Yes No 37 55 40 61 33 33 39 63 43 47 40 31 53 40 30 37 28 27 30 43 46 21 53 46 39 54 53 39 25 26 40.4 11.02849 2.013518 2.04523 44.51811 36.28189 No 26 36 16 21 40 40 30 28 58 27 32 36 47 30 20 30 25 35 32 41 29 40 53 50 37 39 35 37 47 28 36 33 42 44 27 19 44 38 41 30 55 41 38 37 40 25 42 30 51 48 34 38 48 34 45 54 37 38 48 34 40 25 36 45 61 30 38 54 31 48 37 29 30 34 37 47 29 45 37 45 36 42 30 34 46 30 39 43 46 36 29 54 57 41 54 42 44 12 25 36 54 37 62 24 33 21 41 39 37 52 41 48 42 20 48 44 16 30 50 53 28 47 28 43 30 46 47 35 32 52 43 38 49 36 30 32 32 47 53 34 30 48 37 34 28 35 37 55 40 41 50 45 40 53 21 43 35 53 25 31 50 40 34 42 42 30 51 27 25 31 38 41 39 47 56 45 31 57 37 54 40.06667 38.7 34.53333 39.1 41.36667 37.63333 9.598611 10.11366 9.456738 9.83081 10.09433 8.63227 1.752459 1.846494 1.726556 1.794852 1.842963 1.57603 2.04523 2.04523 2.04523 2.04523 2.04523 2.04523 43.65085 42.4765 38.06454 42.77088 45.13595 40.85668 36.48249 34.9235 31.00213 35.42912 37.59738 34.40999 Yes No No Yes No No 36 40 27 48 41 31 45 38 53 57 31 44 32 27 20 50 46 44 43 30 51 12 54 34 35 51 30 51 31 50 39.4 10.95949 2.000919 2.04523 43.49234 35.30766 No 35 48 25 21 53 31 51 34 47 53 35 36 66 39 14 22 58 37 29 23 30 37 33 25 37 42 50 54 36 31 37.73333 12.31185 2.247826 2.04523 42.33065 33.13601 No 47 25 28 42 60 31 28 47 57 39 41 23 26 23 19 53 44 31 28 32 52 36 45 30 42 50 31 53 31 50 38.13333 11.43417 2.087584 2.04523 42.40292 33.86374 No 53 55 36 45 25 50 29 53 44 35 42 29 38 26 56 39 26 29 41 38 37 52 34 43 40 32 43 19 44 47 39.33333 9.753278 1.780697 2.04523 42.97527 35.6914 No 34 40 42 46 52 32 44 32 19 21 58 44 47 40 37 50 28 57 43 51 51 49 53 39 34 36 29 49 27 52 41.2 10.37703 1.894578 2.04523 45.07485 37.32515 No 37 48 26 30 50 57 52 37 28 21 26 21 12 48 35 36 39 24 34 41 43 26 41 31 42 46 22 22 38 41 35.13333 10.86828 1.984268 2.04523 39.19162 31.07505 No 35 31 43 20 53 54 40 56 46 35 38 45 50 46 31 36 37 27 31 48 45 22 44 24 46 31 22 51 53 44 48 46 46 22 31 44 53 50 40 34 44 51 25 48 46 39 34 40 32 43 48 45 20 23 31 39 42 36 45 43 23 51 26 47 35 34 54 62 45 21 35 45 37 45 32 33 33 39 45 31 47 29 28 44 26 30 25 49 45 42 42 31 34 30 56 37 31 47 44 38 36 54 20 31 36 34 48 29 43 25 63 27 36 20 27 37 46 43 47 47 40.03333 36.6 38.1 40.23333 8.65222 10.5458 10.73939 9.525586 1.579672 1.92539 1.960735 1.739126 2.04523 2.04523 2.04523 2.04523 43.26413 40.53786 42.11015 43.79025 36.80254 32.66214 34.08985 36.67642 No No No No 43 61 52 56 49 34 47 43 39 53 32 39 54 31 42 33 30 37 39 39 22 38 26 39 33 34 44 37 25 42 39.76667 9.4017 1.716508 2.04523 43.27732 36.25601 No 37 27 43 34 47 22 38 28 53 19 37 30 34 49 39 33 50 26 56 36 30 27 44 42 50 43 49 35 45 41 38.13333 9.511276 1.736513 2.04523 41.6849 34.58176 Yes 38 58 37 43 45 41 23 51 16 50 48 28 57 34 34 38 42 52 37 48 40 54 39 46 49 26 44 44 29 49 41.33333 10.07329 1.839124 2.04523 45.09476 37.5719 No 57 53 26 27 46 39 29 28 26 51 49 45 39 46 36 28 37 39 30 31 29 27 25 36 32 24 17 40 24 57 35.76667 10.70509 1.954472 2.04523 39.76401 31.76932 No 27 40 45 36 41 29 41 40 34 36 44 37 43 46 43 40 38 21 48 35 30 43 44 38 30 50 39 27 26 30 37.36667 7.203846 1.315236 2.04523 40.05663 34.67671 Yes 36 20 35 41 42 46 55 38 23 32 26 38 39 47 41 44 33 43 48 44 40 41 36 39 26 47 54 39 57 42 38 44 21 32 48 36 38 31 29 51 29 45 31 54 49 52 30 10 36 42 45 53 34 38 39 38 37 25 45 27 50 46 30 39 29 56 44 29 37 43 38 44 53 32 45 32 28 32 27 48 39 39 35 48 55 44 32 36 45 33 57 23 35 31 36 42 47 38 21 44 51 19 46 28 32 43 41 39 50 32 27 48 46 30 29 45 34 45 34 55 47 27 39 57 19 40 34 16 27 46 47 22 52 57 34 39 39 33 48 35 48 34 34 40 26 27 32 21 43 58 14 40 26 21 33 45 27 52 53 25 35 38 46 39 14 29 35 44 31 48 34 48 38 44 29 29 33 28 42 47 39.93333 38 34.86667 38.6 37.6 39.1 10.91324 10.31236 9.525767 9.597413 8.092568 10.45631 1.992476 1.882771 1.739159 1.75224 1.477494 1.909053 2.04523 2.04523 2.04523 2.04523 2.04523 2.04523 44.0084 41.8507 38.42365 42.18373 40.62181 43.00445 35.85826 34.1493 31.30969 35.01627 34.57819 35.19555 No No No No No No 33 46 42 25 56 45 43 24 50 42 27 44 39 48 44 42 27 40 47 14 29 34 35 62 36 31 44 34 49 52 39.46667 10.43777 1.905668 2.04523 43.3642 35.56914 No 63 39 21 45 21 42 46 53 41 39 48 24 47 18 21 28 34 21 36 51 36 33 44 39 34 30 20 33 57 36 36.66667 11.77178 2.149222 2.04523 41.06232 32.27101 Yes 28 50 37 31 22 25 30 46 44 42 33 30 17 38 61 42 38 56 36 48 43 21 34 23 31 53 32 50 54 55 38.33333 11.67471 2.131501 2.04523 42.69274 33.97393 No 28 33 37 39 25 37 30 44 34 47 38 50 57 51 35 40 50 42 21 39 45 52 34 31 38 37 32 34 53 14 38.23333 9.814428 1.791861 2.04523 41.8981 34.56857 No 17 34 35 42 39 39 48 19 52 42 40 48 44 54 23 22 48 36 48 46 30 17 46 34 25 54 39 22 39 42 37.46667 11.1068 2.027814 2.04523 41.61401 33.31932 Yes 33 20 41 35 33 51 42 32 31 33 58 41 28 39 41 21 39 41 29 34 40 38 42 36 29 34 24 45 42 28 36 8.229468 1.502488 2.04523 39.07293 32.92707 No 50 43 40 20 46 36 60 17 38 33 30 42 26 51 48 43 41 46 39 37 53 24 43 39 26 41 43 49 19 29 38.4 10.65315 1.944991 2.04523 42.37795 34.42205 No 39 51 36 34 25 40 41 57 21 28 38 40 47 31 56 30 34 33 52 31 29 28 31 45 37 32 40 24 42 36 36.93333 9.157373 1.6719 2.04523 40.35275 33.51391 No 34 57 47 44 44 28 42 26 36 35 46 35 25 53 43 41 30 46 16 44 25 39 33 33 37 30 58 54 37 13 37.7 11.01144 2.010404 2.04523 41.81174 33.58826 No 44 51 41 32 46 48 30 45 37 29 46 44 39 19 36 43 39 36 47 35 47 24 43 50 30 28 35 37 40 28 38.3 8.128918 1.484131 2.04523 41.33539 35.26461 No 37 26 40 29 53 49 39 30 45 63 48 57 36 29 36 30 21 32 48 25 40 27 34 46 50 42 45 40 48 38 39.43333 10.13592 1.850557 2.04523 43.21815 35.64852 Yes 56 47 34 67 29 29 34 35 39 42 63 25 35 43 36 42 25 22 49 38 38 20 30 46 38 27 29 16 44 34 37.06667 11.77939 2.150612 2.04523 41.46516 32.66817 Yes 23 49 43 26 45 43 30 30 42 27 44 42 55 37 28 45 27 45 60 57 38 32 43 30 42 67 36 50 34 36 40.2 10.77161 1.966618 2.04523 44.22219 36.17781 No 39 41 28 48 39 25 39 43 17 25 49 34 50 30 36 27 26 14 34 54 42 35 40 35 17 49 39 26 44 40 35.5 10.29814 1.880175 2.04523 39.34539 31.65461 No 43 49 47 32 46 53 29 34 41 43 32 25 34 41 55 45 46 22 37 49 21 27 48 50 43 34 22 34 32 46 38.66667 9.732042 1.77682 2.04523 42.30067 35.03266 No 54 30 61 40 38 29 26 38 38 52 50 38 40 24 36 54 40 38 56 38 47 30 47 20 46 22 47 27 29 50 39.5 10.88419 1.987172 2.04523 43.56422 35.43578 No 42 44 42 35 28 28 50 32 38 24 32 40 50 21 51 33 31 27 25 49 33 18 41 28 56 29 42 34 25 55 36.1 10.34025 1.887862 2.04523 39.96111 32.23889 No 37 27 33 37 31 33 40 37 30 35 37 23 37 42 30 56 44 48 39 51 25 23 55 25 27 26 27 16 49 54 35.8 10.4894 1.915094 2.04523 39.71681 31.88319 Yes 31 44 34 42 35 30 44 49 29 57 21 39 49 53 41 39 24 25 47 27 39 46 51 48 44 31 16 48 33 36 29 51 48 31 32 42 37 29 41 35 48 49 51 26 37 47 28 31 37 52 30 43 46 34 35 39 41 22 24 19 36 25 48 48 51 34 43 50 22 44 45 16 36 34 54 28 43 28 29 51 37 46 40 44 50 29 29 40 37 66 37 48 32 37 40 41 36 46 40 50 37 19 27 36 53 37 42 53 48 33 43 24 34 34 42 30 39 46 48 46 32 37 25 32 36 36 41 58 47 49 54 35 62 54 19 38 43 46 33 30 39 38 37 48 25 39 35 34 53 36 36.6 36.7 40.83333 38.96667 40.83333 6.916248 9.773821 10.63852 9.007596 11.24978 1.262728 1.784447 1.94232 1.644554 2.053919 2.04523 2.04523 2.04523 2.04523 2.04523 39.18257 40.3496 44.80582 42.33016 45.03407 34.01743 33.0504 36.86084 35.60318 36.6326 No Yes Yes No No 30 37 30 42 47 31 50 47 24 51 12 38 38 28 34 34 42 29 56 16 54 61 46 57 40 51 48 53 53 46 40.83333 12.22514 2.231995 2.04523 45.39828 36.26839 No 34 37 37 61 45 49 34 23 14 46 36 48 42 50 40 57 38 41 22 56 43 49 48 23 42 28 43 34 46 29 39.83333 10.9673 2.002345 2.04523 43.92859 35.73808 No 31 39 33 32 37 31 44 25 30 12 38 42 31 28 35 55 39 40 39 32 29 34 36 42 26 41 31 51 44 54 36.03333 8.857038 1.617067 2.04523 39.34061 32.72606 Yes 30 46 21 18 39 35 21 55 32 40 27 56 43 30 28 38 44 44 45 34 29 12 22 37 50 40 54 21 39 32 35.4 11.38238 2.078129 2.04523 39.65025 31.14975 No 23 22 32 36 34 33 16 48 32 31 35 12 41 31 68 46 45 34 38 38 57 47 43 12 42 48 39 21 38 28 35.66667 12.44113 2.271428 2.04523 40.31226 31.02107 No 32 44 29 25 46 20 28 45 41 31 45 28 50 43 45 42 44 40 34 49 37 36 49 35 50 45 29 20 44 39 38.16667 8.800797 1.606798 2.04523 41.45294 34.8804 No 34 41 45 33 25 37 51 53 39 44 26 52 61 52 13 24 31 25 38 37 45 26 48 25 43 49 57 31 22 31 37.93333 11.93064 2.178227 2.04523 42.38831 33.47836 No 33 57 40 32 45 31 45 48 39 30 35 31 49 45 20 35 36 32 27 20 44 38 42 49 37 41 34 54 45 57 39.03333 9.499486 1.734361 2.04523 42.5805 35.48617 No 39 53 37 40 30 40 40 42 36 43 35 34 34 48 39 33 34 40 39 36 43 40 42 38 46 29 39 29 34 41 38.43333 5.354233 0.977545 2.04523 40.43264 36.43403 No 37 41 40 38 32 26 39 32 28 36 29 35 46 34 17 47 45 28 47 43 25 41 12 49 20 26 34 34 27 48 34.53333 9.500393 1.734527 2.04523 38.08084 30.98583 No 53 46 35 40 43 27 33 36 39 30 28 48 43 40 34 34 45 32 34 20 50 33 12 42 21 44 34 41 28 50 36.5 9.496823 1.733875 2.04523 40.04617 32.95383 Yes 34 47 25 41 28 29 21 55 36 48 53 50 45 37 47 43 41 41 33 21 32 42 28 45 50 67 22 32 51 56 40 11.51611 2.102544 2.04523 44.30018 35.69982 Yes 22 47 31 17 46 49 43 53 21 36 25 49 32 45 46 37 49 54 45 24 36 28 48 27 47 51 49 39 36 38 16 45 50 41 25 45 17 52 27 40 21 21 47 30 44 39 47 47 53 33 47 36 40 46 53 54 30 31 29 52 37.4 40.2 11.66663 10.30032 2.130026 1.880572 2.04523 2.04523 41.75639 44.0462 33.04361 36.3538 No No Calculate the approximate size required for each of the following at 95 percent confidence: a. Standard deviation = 10, (ME) = 0.5, two tail Sample Size = Sample Size = b. Standard deviation = 10, (ME) = 0.5, one tail Sample Size = c. Standard deviation = 10, (ME) = 1.5, two tail d. Standard deviation = 10, (ME) = 1.5, one tail Sample Size = e. Standard deviation = 35, (ME) = 5, two tail Sample Size = f. Standard deviation = 35, (ME) = 5, one tail Sample Size = g. Standard deviation = $3,200, (ME) = 400, two tail Sample Size = h. Standard deviation = $3,200, (ME) = 400, one tail Sample Size = 1537 1083 171 121 189 133 246 174 2. A hospital administrator wants to measure average cost per stay in his institution. He is willing to be within $200 of the true value with a probability of 95 percent. An initial invest of ten records determined that the standard deviation of cost was $3,987. How large a sample will need to be taken to meet the administrator's needs? Required sample size = 1527 nvestigation of a random sample
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
