Question: Using Hyperparameter Tuning we want to optimize model performance. Please provide a summary for the code.filtered _ df _ model [ ' price _ scaled'

Using Hyperparameter Tuning we want to optimize model performance. Please provide a summary for the code.filtered_df_model['price_scaled']= scaler_price.fit_transform(filtered_df_model[['pricfeatures = filtered_df_model.drop(['price', 'price_scaled'], axis=1)
target = filtered_df_model['price_scaled']X_train, X_test, y_train, y_test = train_test_split(features, target, test_size=0.15, rtrain_data = pd.concat([X_train, y_train], axis=1)majority = train_data[train_data['price_scaled'] train_data['price_scaled'].quantile(
minority = train_data[train_data['price_scaled']>= train_data['price_scaled'].quantilemajority_resampled = resample(majority, n_samples=len(minority)*2,resampled_train_data = pd.concat([majority_resampled, minority])x_train_resampled = resampled_train_data.drop('price_scaled', axis=1)
y_train_resampled = resampled_train_data['price_scaled']xgb_model = XGBRegressor(random_state=42)param_grid ={'learning_rate': [0.01,0.1,0.2],'subsample': [0.8,0.9,1.0],}grid_search = GridSearchCV(estimator=xgb_model, scoring='neg_mean_squared_error', n_jobs=-1,Fit GridSearchCV
grid_search.fit(X_train_resampled, y_train_resampled)best_params = grid_search.best_params_
best_model = grid_search.best_estimator_
print(f"Best Parameters: {best_params}")xgb_predictions = best_model.predict(X_test)from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
def evaluate_model(y_true, y_pred):mse = mean_squared_error(y_true, y_pred)r2= r2_score(y_true, y_pred)#Get metrics
xgb_metrics = evaluate_model(y_test, xgb_predictions)
print(f"XGBoost Regressor: MAE={xgb_metrics[0]:.4f}, MSE={xgb_metrics[1]:.4f}, RMSE={xgb_metrics[2]:.4f}, R2={xgb_metrics[3]:.4f}")
#Result printed: fitting 3 folds for each of 324 candidates, totalling 972 fits
Best Parameters: {'colsample_bytree': 0.8, 'learning_rate': 0.2, 'max_depth': 5,'n_estimators': 300, 'subsample': 0.9}
XGBoost Regressor: MAE=0.3646, MSE=0.3808, RMSE=0.6171, R2=0.6167
Using Hyperparameter Tuning we want to optimize

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Programming Questions!