Question: void calculateProbabilities ( const std::vector& train, double probabilities [ MAX _ CLASS ] [ MAX _ COLS - 1 ] [ 3 ] , double
void calculateProbabilitiesconst std::vector& train, double probabilitiesMAXCLASSMAXCOLS double classPriorsMAXCLASS double lambda
int classCountsMAXCLASS;
for int c ; c MAXCLASS; c
for int i ; i MAXCOLS ; i
for int v ; v ; v
probabilitiesciv lambda;
for const auto& record : train
classCountsrecordclassLabel;
for sizet i ; i record.attributes.size; i
if recordattributesi MISSING
probabilitiesrecordclassLabelirecordattributesi;
for int c ; c MAXCLASS; c
classPriorsc staticcastclassCountsc train.size;
for int i ; i MAXCOLS ; i
double total classCountsc lambda;
for int v ; v ; v
probabilitiesciv total;
ClassLabel naiveBayesPredictconst Record& record, const double probabilitiesMAXCLASSMAXCOLS const double classPriorsMAXCLASS
double logProbsMAXCLASS std::logclassPriorsDEMOCRAT std::logclassPriorsREPUBLICAN;
for int c ; c MAXCLASS; c
for sizet i ; i record.attributes.size; i
if recordattributesi MISSING
logProbsc std::logprobabilitiescirecordattributesi;
if logProbsDEMOCRAT logProbsREPUBLICAN
return DEMOCRAT;
else
return REPUBLICAN;
void evaluateModelconst std::vector& data, const double probabilitiesMAXCLASSMAXCOLS const double classPriorsMAXCLASS double& accuracy
int correct ;
for const auto& record : data
if naiveBayesPredictrecord probabilities, classPriors record.classLabel
correct;
accuracy staticcastcorrect data.size;
void crossValidateconst std::vector& records, double lambda, double& averageAccuracy, double& stdDev, std::vector& foldAccuracies
sizet foldSize records.size;
foldAccuracies.clear;
for int i ; i ; i
std::vector train, test;
for sizet j ; j records.size; j
if j i foldSize && j i foldSize
test.pushbackrecordsj;
else
train.pushbackrecordsj;
double probabilitiesMAXCLASSMAXCOLS ;
double classPriorsMAXCLASS;
calculateProbabilitiestrain probabilities, classPriors, lambda;
double foldAccuracy;
evaluateModeltest probabilities, classPriors, foldAccuracy;
foldAccuracies.pushbackfoldAccuracy;
double sum ;
for sizet i ; i foldAccuracies.size; i
sum foldAccuraciesi;
double mean sum foldAccuracies.size;
double sqSum ;
for sizet i ; i foldAccuracies.size; i
sqSum foldAccuraciesi meanfoldAccuraciesi mean;
stdDev std::sqrtsqSum foldAccuracies.size;
averageAccuracy mean;
Optimize this C code for Naive Bayes Classification of republicans and democrats dataset. Can you make it more understandable and clear, and to be connected? In this particular code is implemented naive bayes with Laplas and logarithm for handling the unexpected errors and deviations
Step by Step Solution
There are 3 Steps involved in it
1 Expert Approved Answer
Step: 1 Unlock
Question Has Been Solved by an Expert!
Get step-by-step solutions from verified subject matter experts
Step: 2 Unlock
Step: 3 Unlock
