Question: We are given a weighted complete bipartite graph G = (X; Y; X x Y ), where X = {x1.....xn} and Y = {y1 ........

We are given a weighted complete bipartite graph G = (X; Y; X x Y ), where X = {x1.....xn} and Y = {y1 ........ ym}, with n < m. By w(i,j) we denote the weight of edge (x i ; yj ). A cross-free matching M is a matching between X and Y in which no two edges "cross". More specically, if i < j and (x i ; y k ); (x j ; y l ) (belong to) M then k < l. The weight of a matching M is the sum of the weights of the edges in M . Give a dynamic programming algorithm that computes a perfect cross-free matching in G of minimum weight (perfect here means that each node in X is matched { some of the nodes in Y will remain unmatched). Analyze the space and time complexity of your solution

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!