Question: We give an example of the EIGamal Cryptosystem implemented in F33. The poly- nomial a + 2? + 1 is irreducible over Z3[r] and

We give an example of the EIGamal Cryptosystem implemented in F33. The

poly- nomial a + 2? + 1 is irreducible over Z3[r] and

hence Z3[r]/( +2x2 +1) is the field F3. We can associate the

We give an example of the EIGamal Cryptosystem implemented in F33. The poly- nomial a + 2? + 1 is irreducible over Z3[r] and hence Z3[r]/( +2x2 +1) is the field F3. We can associate the 26 letters of the alphabet with the 26 nonzero field elements, and thus encrypt ordinary text in a convenient way. We will use a lexicographic ordering of the (nonzero) polynomials to set up the correspondence. ABLE 6.3 EIGamal Ciphertext (31552, 3930) (19936, 721) (31590, 26470) (3781, 14409) (301, 17252) (30555, 24611) (20501, 2922) (4294, 2307) (14130, 22010) (25910, 19663) (26004, 25056) (5400, 31486) (3149, 7400) (27214, 15442) (5809, 30274) (27765, 29284) (29820, 7710) (15898, 30844) (19048, 12914) (28856, 15720) (5740, 31233) (3036, 20132) (19557, 10145) (18899, 27609) (12962, 15189) (27149, 20535) (25302, 10248) (346, 31194) (25038, 12483) (11685, 133) (16081, 16414) (28580, 20845) (2016, 18131) (19886, 22344) (21600, 25505) (27119, 19921) (23312, 16906) (3781, 14409) (5400, 31486) (16160, 3129) (24689, 7776) (13659, 5015) (2320, 29174) (1616, 14170) (9526, 3019) (9396, 3058) (29538, 5408) (1777, 8737) (23258, 3468) (8836, 25898) (10422, 5552) (26117, 14251) (7129, 18195) (26052, 20545) (8794, 17358) (1777, 8737) (25115, 10840) (14130, 22010) (23418, 22058) (24139, 9580) (21958, 5713) (1777, 8737) (3780, 16360) (173, 17075) (21563, 7891) (24271, 8480) (26592, 25457) (30499, 14423) (5839, 24179) (24875, 17641) (1777, 8737) (28250, 21321) (28327, 19237) (15313, 28649) (9660, 7939) (12846, 6598) (10267, 20623) (9284, 27858) (18825, 19671) (31306, 11929) (26664, 27572) (27011, 29164) (22763, 8992) (2059, 3977) (10536, 6941) (10422, 5552) (4328, 8635) (3576, 4630) (3149, 7400) (8951, 29435) (21541, 19004) (5865, 29526) (17561, 11884) (2209, 6107) (14884, 14280) (28327, 19237) (15313, 28649) (16258, 30341) (1777, 8737) (19371, 21005) (28250, 21321) (26521, 5803) This correspondence is as follows: A 1 C +1 2x +1 x +1 x2 + x +1 x2 + 2x +1 2x +1 2x2 + r +1 2x2 + 2x +1 D E x + 2 F G H 2x + 2 I x + x 2 + 2x 2x2 J x + 2 x2 + a +2 x2 + 2x + 2 2x + 2 2x2 + x + 2 22 + 2x + 2 K M N Q # 2x2 + r + 2.x2 + 2x S U V W Y 11 in an EIGamal Cryptosystem; then 3 = x+2. Suppose Bob uses a = x and a Show how Bob will decrypt the following string of ciphertext: (K,H)(P,X)(N,K)(H,R)(T,F) (V,Y) (E,H) (F,A) (T,W) (J,D)(U,J)

Step by Step Solution

3.49 Rating (156 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

To decrypt the ciphertext using the ElGamal cryptosystem we need to follow these steps Step 1 Unders... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!