Question: What is machine epsilon epsilon_m for this 8-bit floating-point number? According to the IEEE 754 protocols, compute the following values: i) The greatest, positive, normal,

What is machine epsilon epsilon_m for this 8-bit floating-point number? According to the IEEE 754 protocols, compute the following values: i) The greatest, positive, normal, floating-point number has a binary representation of What is its decimal value? ii) The smallest, positive, normal, floating-point number has a binary representation of What is its decimal value? ii) The greatest, positive, subnormal, floating-point number has a binary representation of What is its decimal value? iv) the smallest, positive, subnormal, floating-point number that is greater than 0 has a binary representation of (recall that 0_10 = 0000 0000_2) What is its decimal value? The range of integers that can be represented by this 8-bit construction is -15..15 What are the floating-point representations for the sixteen, positive, decimal integers 0..15 in this 8-bit notation? Note, to get their negative counterparts, one only has to do is toggle the sign bit from 0 to 1. Please explain how you derived them
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
