Question: Write a MATLAB Function for this problem. If a random variable Xis distributed normally with zero mean and unit standard deviation, the probability that 0
Write a MATLAB Function for this problem.

If a random variable Xis distributed normally with zero mean and unit standard deviation, the probability that 0 X x is given by the standard normal function (x). This probability is usually looked up in tables, such as the one shown below Normal PDF 02 Area under the Normal Curve from 0 to X X 0.00 0.01 0.02 0.03 0.07 0.08 0.0 0.00000 0,00399 0.00798 0.01197 0.01595 0.01994 0.02392 0,02790 0.03188 0.03586 0.1 0.03983 0.04380 0.04776 0.05172 0.05567 0.05962 0.06356 0.06749 0.07142 0.07535 0.2 0.07926 0.08817 0.08706 0.09095 0.09483 0.09871 0.10257 0.10642 0.11026 0.1140 0.3 0,11791 0.12172 0,12552 0.12930 0.13307 0.13683 0.14058 0,14431 0.14803 0.15173 0.4 0.15542 0.15910 0.16276 0.16640 0.17003 0.17364 0.17724 0.18082 0.18439 0.18793 0.5 0.1914G 0.19497 0.19847 0.20194 0.20540 0.20884 0.21226 0.21566 0.21904 0.22240 0.6 0.22575 0.22907 0,23237 0.23565 0.23891 0.24215 0.24537 0.24857 0.25175 0.25490 0.7 0.25804 0.26115 0.26424 0.26730 0.27035 0.27337 0.27637 0.27935 0.28230 0.28524 08 0.28814 0.29103 0.29389 0.29673 0.29955 0.30234 0.30511 0.30785 0.31057 0.31327 0.9 0,31594 0.31859 0.32121 0.32381 0.32639 0.32894 0.33147 0,33398 0,33646 0.33891 1.0 0.34134 0.34375 0.34614 0.34849 0.35083 0.35314 0.35543 0.35769 0.35993 0.36214 1.1 0.36433 0.86650 0.36864 0.37076 0 37286 0.37493 0.37698 0.37900 0.38100 0.38298 1.2 0.38493 0.38686 0,38877 0.39065 0.39251 0.39435 0.39617 0.39796 0,39973 0.40147 1.3 0.40320 0.40490 0.40658 0.40824 0.40988 0.41149 0.41308 0.41466 0.41621 0.41774 1.4 0.41924 0.42073 0.42220 0.42364 0 425070.42647 0,42785 0,42922 0.43056 043189 1.5 0.43319 0.43448 0.43574 0.43699 0.43822 0.43943 0.44062 0.44179 0.44295 0.44408 1.6 0.44520 0.44630 0.44738 0.44845 0.44950 0,45053 0,45154 0.45254 0.45352 0.45449 1.7 0.45543 0.45637 0.45728 0.45818 0.45907 0.45994 0.46080 0.46164 0.46246 0.46327 1.8 0.46407 0.46485 0.46562 0.46638 0.46712 0.46784 0.46856 0.46926 0.46995 047062 19 0.47128 0.47193 0,47257 0,47320 0.47381 0.47441 0.47500 0,47558 0.47615 0.47670 2.0 0.47725 0.47778 0.478310.47882 0.47932 0.47982 0,48030 0,48077 0.48124 0.48169 1 However, the probability may also be approximated from where a 0.4361836, b O. I 201 676, 0.937298. 1 + 0.3326x. Write a function in MATLAB to compute (x). Compare your function output with the table output for x = 0.27 and x 1.53
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
