Question: Write a Python program to plot the t-distribution of completion times of all the racers in Boston Marathon from 2012 bm_results2012.csv and overlay the plot

Write a Python program to plot the t-distribution of completion times of all the racers in Boston Marathon from 2012 bm_results2012.csv and overlay the plot with the t-distribution of a sample of 100 randomly selected racers. Both the t-distribution should be in the same chart, overlapping each other, but with different colors.

Here is a sample of the .csv file - I need to know how to call it from the jupyter notebook in the code

name city gender age official country
Masazumi Soejima Fukuoka City M 41 83.45 JPN
Gebregziabher Gebremariam Tigray M 27 142.93 ETH
Ernst F. Van Dyk Paarl M 39 84.38 RSA
Kurt H. Fearnley Hamilton M 31 81.65 AUS
Kota Hokinoue Iizuka M 38 83.43 JPN
Levy Matebo Trans Nzoia M 22 133.1 KEN
Sharon Cherop Marakwet F 28 151.83 KEN
Wilson Chebet Marakwet M 26 134.93 KEN
Joshua R. Cassidy Toronto M 27 78.42 CAN
Krige Schabort Cedartown M 48 83.73 USA
Firehiwot Dado Assela F 28 154.93 ETH
Laban Korir Uasin Gishu M 26 135.48 KEN
Adam Bleakney Champaign M 36 92.42 USA
Rita Jeptoo Eldoret F 31 155.88 KEN
Saul Mendoza Wimberley M 45 105.35 USA
Wesley Korir Kenya M 29 132.67 KEN
Michel Filteau St Jean Baptite M 45 86.83 CAN
Bernard Kipyego Eldoret M 25 133.22 KEN
Aaron L. Pike Champaign M 25 92.75 USA
David Barmasai Keiyo M 23 137.27 KEN
Brett A. McArthur Lutry M 47 93.62 SUI
Georgina Rono Kapsabet F 31 153.15 KEN
Ryan Chalmers city gender age official country
Kyle Shaw Fukuoka City M 32.74025974 126.3967532 JPN
Genet Getaneh Tigray M 32.74929418 127.3821626 ETH
Jean Paul Compaore Paarl M 32.75832863 128.367572 RSA
Mathew Kisorio Hamilton M 32.76736307 129.3529814 AUS
Diana Sigei Iizuka M 32.77639752 130.3383907 JPN
Bradley F. Ray Trans Nzoia M 32.78543196 131.3238001 KEN
Brian Siemann Marakwet F 32.7944664 132.3092095 KEN
Jemima Jelagat Sumgong Marakwet M 32.80350085 133.2946189 KEN
Jason Hartmann Toronto M 32.81253529 134.2800282 CAN
Nadezdha Leonteva Cedartown M 32.82156973 135.2654376 USA
Joshua R. Swoverland Assela F 32.83060418 136.250847 ETH
Rafael Botello Jimenez Uasin Gishu M 32.83963862 137.2362564 KEN
Michel Butter Champaign M 32.84867307 138.2216657 USA
Travis Dodson Eldoret F 32.85770751 139.2070751 KEN
Mayumi Fujita Wimberley M 32.86674195 140.1924845 USA
Peter Park Kenya M 32.8757764 141.1778938 KEN
Sergio Reyes St Jean Baptite M 32.88481084 142.1633032 CAN
Robert Kozarek Eldoret M 32.89384529 143.1487126 KEN
Mary A. Akor Champaign M 32.90287973 144.134122 USA
Tommy Greenless Keiyo M 32.91191417 145.1195313 KEN
Lauren Philbrook Lutry M 32.92094862 146.1049407 SUI
Benjamin R. Hulin Kapsabet F 32.92998306 147.0903501 KEN
Shannon M. Miller city gender age official country
Andre J. Kajlich Fukuoka City M 32.9390175 148.0757595 JPN
Glenn Randall Tigray M 32.94805195 149.0611688 ETH
George Gallego Paarl M 32.95708639 150.0465782 RSA
Peter E. Hawkins Hamilton M 32.96612084 151.0319876 AUS
Aya Manome Iizuka M 32.97515528 152.017397 JPN
Hilary K. Dionne Trans Nzoia M 32.98418972 153.0028063 KEN
David Grassi Marakwet F 32.99322417 153.9882157 KEN
Jake Krong Marakwet M 33.00225861 154.9736251 KEN
David Bedoya Toronto M 33.01129305 155.9590344 CAN
Paul M. Molyneux Cedartown M 33.0203275 156.9444438 USA
Akiko Kudo Assela F 33.02936194 157.9298532 ETH
Matt Hensley Uasin Gishu M 33.03839639 158.9152626 KEN
Elizabeth Herndon Champaign M 33.04743083 159.9006719 USA
Autumn J. Ray Eldoret F 33.05646527 160.8860813 KEN
Matthew T. Manning Wimberley M 33.06549972 161.8714907 USA

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!