Question: ( x 3 + 1 ) 2 0 3 x 2 d x = poinits / 2 5 pointe en A ) ( x 3

(x3+1)203x2dx=
poinits/25 pointe en
A)(x3+1)2121+C
B)(x3+1)21213x2+C
C)
4x3sin(x4)dx=
A)-cos(x4)+C
B)cos(x4)+C
C)cos(r2)4+C
(2x+1)7dx=
A)(2x+1)816+C
B)(2x+1)n8+C
C)(2a+3)n16
ex1+e2xdx=
A)sin-1(ex)+C
B)cos-1(ex)+C
C)tan-1(e2)+C
dx5-x22=
A)cos-1(x52)+C
B)sin-1(x5)+Csin-1(52)+C
q,
If 01f(x)+g(x)dx=10,01f(x)=2, then 013g(x)+x2dx=
A)253
B)24
C 2413
7. The total area between the curve y=1-x2 and the x-axis over the interval 0,2
A)83
B)2
C)73
8. The volume of the solid that results when the region enclosed by the curves cosx,x=0, and x=4 that revolved about the x-axis is
A)2
B)12
C)
q,
9.dx1+9x22=
A)13cosh-1(3x)+C
r)13sinh-1(3x)+C
C)13tanh-1(3x)
10. Using the integration by parts, 01tan-1(x)dx=
A)4-ln(2)
D)4-ln(2)2
C)4-ln(4)
( x 3 + 1 ) 2 0 3 x 2 d x = poinits / 2 5 pointe

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Mathematics Questions!