Question: You are back at it again as a quantitative analyst! This time a small college, Southwest College (SWC) has hired you to make sense of
You are back at it again as a quantitative analyst! This time a small college, Southwest College (SWC) has hired you to make sense of some data they have obtained. The administrators have a lot of experience in education but precious little in data analysis. They have hired you to help them understand their data and make sound decisions.
SWC has provided you with as much information as they have, and it is up to you to determine the best quantitative approach to answering their questions. SWC has also made it clear that it is crucial that you explain what you are doing in a way such that a group of people unfamiliar with quantitative analysis can understand what you are doing and feel comfortable with the results. If you just provide a numerical answer to their questions, while still helpful, this will not meet their expectations for the project.
Deliverable
SWC has requested that you answer their questions in the form of a business report in MS Word format. Simply typing answers to their questions below will be construed as a lack of professionalism. The writing must be free of errors and easy to understand. The exact design of the report is up to you, as long as the report format is used correctly and professionally, and all issues are addressed in an organized and coherent manner. You are to include any equations and calculations that you have done to be completely transparent. The body of your report should contain data visualizations to effectively present your evidence and findings. Output from any analyses should be provided in an appendix to your report.
THE CASE
The provost at SWC, based on anecdotal evidence, is convinced that the student-faculty ratio (# of students divided by the number of faculty) is an important determinant of student success after graduation. The university president believes the overall prestige of the university is a bigger factor, and other administrators believe it is largely the academic quality of the students admitted that matters most. SWC has purchased some data that shows students' starting salaries along with various characteristics of the universities the students attended. The data set (found on the first tab of the provided spreadsheet, "Student Data") contains the following variables: the per semester cost of attendance, the region of the country in which the school is located, the total students enrolled, the number of faculty at the university, the average high school GPA of students admitted, the size of the school's library, and the school's national rank. Additionally, the university provost has compiled historical enrollment data from SWC, which can be found on the second tab in the provided spreadsheet ("Enrollment data"). Specifically, the administrators want answers to the following questions:
What is the appropriate quantitative technique to determine how the variables are related?
Based on your analysis, how are students' starting salaries related to each of the explanatory variables in the data set?
Which variables are statistically important determinants of starting salaries? How did you arrive at this answer?
In your opinion, are any important variables missing from the data set?
Based on your analysis, what strategy or strategies would you recommend for improving the starting salaries of SWC graduates?
What techniques can SWC use to forecast enrollment for the next academic year?
Which forecasting method do you recommend using given the historical enrollment data provided?
In addition to the questions above, SWC has requested a data visualization component in the report. You are to use multiple diagrams and appropriately formatted charts following the principles you learned in this course to help illustrate key findings. The data SWC has purchased and compiled can be found in the Excel file "Case 2 Data" located in the D2L course shell.
SUMMARY OUTPUT Regression Statistics Multiple R 0.896917086 R Square 0.80446026 Adjusted R Square 0.793818641 Standard Error 10323.80005 Observations 156 ANOVA df SS MS F Significance F Regression 8 64456402743 8057050343 75.59566785 3.03501E-48 Residual 147 15667384575 106580847.4 Total 155 80123787318 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0% Intercept -11016.09799 22974.47822 -0.479492848 0.63230065 -56419.0271 34386.83112 -56419.0271 34386.83112 north -1975.366873 2462.211901 -0.802273302 0.423689979 -6841.272046 2890.5383 -6841.272046 2890.5383 south 274.0009395 2507.76292 0.109261102 0.913144408 -4681.923673 5229.925552 -4681.923673 5229.925552 west -1183.784326 2438.037834 -0.485547972 0.628010595 -6001.915901 3634.34725 -6001.915901 3634.34725 Cost 0.478752927 0.162005237 2.955169457 0.003640835 0.158592782 0.798913072 0.158592782 0.798913072 HSGPA 25766.24149 6263.290956 4.113850318 6.45405E-05 13388.51728 38143.9657 13388.51728 38143.9657 LIBVOL 16.91296416 3.969535757 4.260690719 3.62264E-05 9.068235376 24.75769294 9.068235376 24.75769294 RANK -232.5001968 27.07872614 -8.586083245 1.18954E-14 -286.0140774 -178.9863163 -286.0140774 -178.9863163 stud/facratio 3.244051701 29.93274328 0.108378028 0.913843621 -55.9100326 62.39813601 -55.9100326 62.39813601 OBS SALARY north south west Cost HSGPA LIBVOL RANK stud/facratio TOTSTUD FACULTY 1 67100 0 0 0 27076 3.2 493 49 44.43 13330 300 4 130340 0 0 0 30787.4 3.82 1275 3 22.09 4860 220 5 122900 0 0 0 31812.2 3.7 810 8 56.14 11453 204 8 57335.6 0 0 0 22696.8 3.1 721 138 71.97 32676 454 10 68960 0 0 0 23970.8 3.2 613 70 106.36 14678 138 16 60776 0 0 0 20332.2 3.4 487 94 63.57 8518 134 19 113920.4 0 0 0 29467.2 3.7 675 9 25.67 4620 180 22 66914 0 0 0 27319.6 3.55 480 50 75.26 12945 172 30 105068 0 0 0 26805.8 3.42 705 23 65.02 18335 282 35 118631.6 0 0 0 29936.2 3.52 1092 18 57.30 30944 540 46 55940 0 0 0 23042.6 3.3 450 108 87.50 25025 286 47 147684.8 0 0 0 34161.4 3.6 1102 7 74.79 16603 222 48 60218 0 0 0 8034.6 3.12 345 145 69.80 15496 222 50 64589.6 0 0 0 25652.2 3.3 528 72 77.66 12271 158 52 54861.2 0 0 0 22297.8 3.3 420 150 91.42 4571 50 54 93737.6 0 0 0 20865.6 3.34 450 17 77.87 8566 110 59 61148 0 0 0 26724.6 3.27 390 127 109.81 12079 110 61 76028 0 0 0 17507 3.39 589 60 149.31 11646 78 65 50360 0 0 0 26888.4 3.3 420 162 64.91 11165 172 66 57242 0 0 0 22121.4 3.31 375 111 53.65 7940 148 70 56870 0 0 0 18552.8 3.07 363 114 85.60 19346 226 72 66542 0 0 0 26303.2 3.16 474 87 67.02 21848 326 73 63008 0 0 0 25305 3.29 574 84 30.48 6400 210 75 72680 0 0 0 21551.6 3.35 487 57 55.58 12560 226 76 48500 0 0 0 23878.4 2.8 465 174 95.58 13763 144 78 97772 0 0 0 22279.6 3.47 445 16 56.75 6015 106 82 122676.8 0 0 0 29919.4 3.3 615 22 63.89 26324 412 84 61692.8 0 0 0 16424.8 3.3 288 89 75.20 9625 128 88 66542 0 0 0 25824.4 3 565 86 65.18 21511 330 89 55754 0 0 0 26737.2 3.23 247 110 82.44 10058 122 92 63138.8 0 0 0 27437.2 3.25 636 34 75.54 12993 172 96 71936 0 0 0 17400.6 3.22 675 64 130.28 10683 82 100 57800 0 0 0 17530.8 3.2 489 118 75.99 11550 152 102 125550 0 0 0 29829.8 3.55 600 10 74.12 9191 124 103 55010 0 0 0 19450.2 3.2 220 171 73.41 5726 78 106 70820 0 0 0 24987.2 3.41 630 63 67.73 10972 162 112 97012.4 0 0 0 26245.8 3.25 592 28 92.34 13667 148 122 68960 0 0 0 20648.6 3.2 366 66 101.84 8758 86 128 53894 0 0 0 18912.6 3.08 451 135 92.92 12079 130 130 56565.2 0 0 0 19443.2 3 279 142 57.57 6448 112 136 115460 0 0 0 28365.4 3.51 604 31 52.91 22859 432 140 78260 0 0 0 28603.4 3.2 478 51 85.52 14196 166 141 121040 0 0 0 24295.6 3.6 1050 15 77.49 18287 236 145 128135.6 0 0 0 29717.8 3.75 2617 1 107.31 26613 248 149 106532 0 0 0 30934.4 3.25 1332 11 89.19 20693 232 151 56870 0 0 0 16088.8 2.85 360 116 84.22 7748 92 152 78539.6 0 0 0 20819.4 3.3 658 45 45.59 19057 418 156 57184.4 0 0 0 25176.2 3.2 262 152 67.62 7844 116 2 92814 1 0 0 17644.2 3.4 675 21 131.88 13715 104 7 75004.8 1 0 0 28015.4 3.3 457 55 57.54 10587 184 9 124620 1 0 0 29738.8 3.6 835 14 40.04 9769 244 23 53568 1 0 0 10669.4 3.22 375 163 50.66 9625 190 24 64170 1 0 0 19642 3.3 285 76 120.31 7459 62 32 55800 1 0 0 20473.6 3.2 420 113 30.22 12512 414 37 98908.8 1 0 0 25720.8 3.45 510 35 63.80 8421 132 39 73470 1 0 0 20970.6 3.2 330 40 72.62 8133 112 42 55425.6 1 0 0 13617.8 3.01 457 121 122.46 13715 112 43 61008 1 0 0 17400.6 3.37 508 90 57.57 6448 112 49 65100 1 0 0 10327.8 3.35 622 67 77.13 11261 146 71 61194 1 0 0 23144.8 3.27 468 82 74.79 17950 240 79 65100 1 0 0 22391.6 3.3 322 69 91.53 8421 92 90 93000 1 0 0 20126.4 3.49 765 30 85.24 10058 118 94 120900 1 0 0 31439.8 3.67 1125 2 85.68 18335 214 95 55239.6 1 0 0 26952.8 3 337 136 74.32 6689 90 101 55335.6 1 0 0 15268.4 3.2 186 122 61.75 3705 60 105 55056 1 0 0 17025.4 3.1 390 154 87.23 11165 128 108 76818 1 0 0 20157.2 3.5 885 33 85.94 10828 126 111 57660 1 0 0 18649.4 3.3 615 109 92.07 12705 138 113 55986 1 0 0 19997.6 3.25 322 131 185.41 12608 68 116 55893.6 1 0 0 14410.2 3.3 453 106 84.88 6111 72 117 53754 1 0 0 21236.6 3.2 312 141 148.38 8903 60 119 130200 1 0 0 30039.8 3.75 832 4 97.34 8566 88 120 55428 1 0 0 20448.4 3.15 300 120 201.74 15736 78 125 58404 1 0 0 13696.2 3.15 324 128 101.06 10106 100 133 74400 1 0 0 19915 3.4 889 38 68.51 9865 144 135 55800 1 0 0 10648.4 3 300 160 72.79 5678 78 138 54312 1 0 0 18186 3 300 144 53.23 7026 132 142 92743.2 1 0 0 20553.4 3.56 1200 20 46.07 12993 282 143 54684 1 0 0 17836 3.35 435 133 91.37 14437 158 154 65100 1 0 0 23331 3.24 427 73 35.02 11838 338 3 55428 0 1 0 21840 3.1 315 137 88.35 11309 128 6 56563.2 0 1 0 9576 3.16 330 124 82.57 7266 88 12 48360 0 1 0 12371.8 3.12 331 175 104.27 9384 90 14 55800 0 1 0 22345.4 3.1 378 105 69.06 7459 108 17 64728 0 1 0 15222.2 3.28 393 80 116.48 10250 88 28 69192 0 1 0 19363.4 3.53 795 59 64.17 9625 150 29 75499.2 0 1 0 10453.8 3.3 390 54 116.87 8181 70 33 72540 0 1 0 11817.4 3.3 600 48 60.15 14918 248 38 106020 0 1 0 27757.8 3.62 493 16 54.21 8999 166 40 85752 0 1 0 28229.6 3.4 390 43 66.03 11357 172 41 66960 0 1 0 13731.2 3 390 100 83.83 10395 124 45 61380 0 1 0 16350.6 3.3 493 92 61.28 6496 106 51 54867.6 0 1 0 12420.8 3.1 517 117 19.84 8133 410 56 63054 0 1 0 18852.4 3.3 519 81 76.70 9817 128 58 54870 0 1 0 20463.8 3 435 168 113.93 22330 196 62 48360 0 1 0 11166.4 3.15 241 172 100.83 8470 84 68 55130.4 0 1 0 23133.6 3.1 345 155 80.81 10828 134 74 56079.6 0 1 0 12359.2 3.2 369 140 88.76 7988 90 77 55242 0 1 0 23214.8 3 402 151 85.16 12945 152 81 72540 0 1 0 28830.2 3.18 660 42 136.89 12320 90 86 63054 0 1 0 15969.8 3.2 354 93 79.45 6833 86 87 64635.6 0 1 0 16774.8 3 330 85 93.15 7266 78 93 66030 0 1 0 7145.6 3.1 390 101 87.23 11165 128 97 65100 0 1 0 20945.4 3.3 600 68 95.88 12464 130 98 50220 0 1 0 15078 2.73 450 170 110.68 11068 100 104 61752 0 1 0 12289.2 3.66 235 91 35.08 3368 96 109 56079.6 0 1 0 9581.6 3.12 345 157 71.70 7170 100 121 50220 0 1 0 17511.2 3.03 324 134 107.59 11405 106 123 64635.6 0 1 0 6868.4 3.35 810 83 131.41 13667 104 126 61562.4 0 1 0 11135.6 3.5 384 104 95.24 9143 96 127 55800 0 1 0 26997.6 3.2 474 146 57.38 10443 182 129 110670 0 1 0 13428.8 3.5 1275 12 81.19 25169 310 134 56050.8 0 1 0 21911.4 3.23 324 148 40.85 7844 192 139 46314 0 1 0 4375 3.38 316 165 57.82 7170 124 144 54870 0 1 0 13195 3.2 525 125 49.48 5245 106 146 52080 0 1 0 18848.2 3.31 351 167 79.59 8277 104 147 74214 0 1 0 28303.8 3.2 588 107 76.30 23196 304 148 85353.6 0 1 0 11562.6 3.4 684 46 101.74 11598 114 11 58962 0 0 1 13808.2 3.4 466 98 85.31 7507 88 13 117366 0 0 1 19394.2 3.45 556 27 91.67 7700 84 15 64914 0 0 1 25737.6 3.15 510 75 114.72 19731 172 18 68634 0 0 1 19224.8 3.28 367 96 60.72 7651 126 20 55112.4 0 0 1 26649 3 345 156 135.07 11886 88 21 91140 0 0 1 15838.2 3.63 675 25 46.86 7122 152 25 63482.4 0 0 1 22552.6 3.14 300 79 47.52 11405 240 26 72075.6 0 0 1 24364.2 3.32 315 61 118.65 13763 116 27 96720 0 0 1 27563.2 3.5 495 26 90.80 9625 106 31 120900 0 0 1 18607.4 3.7 900 5 73.55 12945 176 34 57102 0 0 1 20696.2 3.2 297 112 80.78 9047 112 36 50220 0 0 1 11389 3.25 219 132 96.25 4620 48 44 63984 0 0 1 20616.4 3.16 295 74 99.32 9336 94 53 66960 0 0 1 10792.6 3.43 487 62 168.99 14533 86 55 117180 0 0 1 19643.4 3.57 705 13 79.45 16843 212 57 77190 0 0 1 27608 3.2 714 41 53.19 10106 190 60 58590 0 0 1 11603.2 3.4 261 143 100.03 3801 38 63 58218 0 0 1 25321.8 3.2 312 115 102.53 18046 176 64 55335.6 0 0 1 22505 3.2 487 123 53.81 11838 220 67 60078 0 0 1 22023.4 3.23 360 88 78.20 11261 144 69 78678 0 0 1 24259.2 3.2 412 47 90.16 16410 182 80 72540 0 0 1 19824 3.5 436 53 81.48 7170 88 83 63240 0 0 1 13900.6 3.4 456 97 62.87 7796 124 85 56878.8 0 0 1 13020 3.42 346 139 45.71 3657 80 91 72540 0 0 1 25803.4 3.17 367 56 57.99 11598 200 99 91140 0 0 1 14201.6 3.55 396 29 48.91 5967 122 107 117180 0 0 1 30448.6 3.78 621 6 75.98 8662 114 110 78120 0 0 1 23385.6 3.24 427 37 108.40 21030 194 114 52080 0 0 1 22806 3.3 451 129 101.93 14678 144 115 76260 0 0 1 25895.8 3.25 480 52 64.87 16218 250 118 62506.8 0 0 1 13014.4 3.38 498 95 58.21 7218 124 124 65100 0 0 1 19384.4 3.31 420 65 59.09 8036 136 131 65100 0 0 1 11306.4 3.27 376 102 54.78 7122 130 132 62775.6 0 0 1 10525.2 3.6 495 78 69.46 7363 106 137 55149.6 0 0 1 10992.8 3.24 234 153 92.63 3705 40 150 72540 0 0 1 27792.8 3.35 511 36 42.22 8951 212 153 117180 0 0 1 15919.4 3.49 1090 17 95.03 11213 118 155 115320 0 0 1 20475 3.55 813 19 80.66 20164 250
Year Fall Census 2005 6073 2006 6437 2007 7219 2008 7165 2009 7984 2010 7795 2011 8390 2012 8261 2013 8715 2014 8390 2015 8865 2016 9045 2017 8732 2018 8821 2019 8418 2020 7680 2021 7872
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
