Question: z = a_df['city'].value_counts().loc[lambda x : x>1] z.index.tolist() z = a_df.loc[(a_df['city'] == 'Chicago') | (a_df['city'] == 'Portland')| (a_df['city'] == 'Rochester')|(a_df['city'] == 'Houston')| (a_df['city'] == 'Jacksonville')|(a_df['city'] ==

z = a_df['city'].value_counts().loc[lambda x : x>1] z.index.tolist() z = a_df.loc[(a_df['city'] == 'Chicago') | (a_df['city'] == 'Portland')| (a_df['city'] == 'Rochester')|(a_df['city'] == 'Houston')| (a_df['city'] == 'Jacksonville')|(a_df['city'] == 'Columbus')| (a_df['city'] == 'New York')|(a_df['city'] == 'Jackson')| (a_df['city'] == 'Charleston')|(a_df['city'] == 'Springfield')] details_cities_with_multiple_airport = pd.DataFrame(details_cities_with_multiple_airport.groupby(['city'],as_index=False).sum().sort_values(by='cnt',ascending=True)) details_cities_with_multiple_airport

can someone simplify this code?

Step by Step Solution

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Databases Questions!