Question: Momentsofadistributioncanbederivedbydifferentiatingthe moment generatingfunction (mgf ), m(t) = EetY . This functionprovidesanalternativewaytospecifyadistribution. (a) Showthatthe kth derivative m(k)(t) = EY ketY , andhence m(0) = E(Y )
Momentsofadistributioncanbederivedbydifferentiatingthe moment generatingfunction
(mgf ), m(t) = EetY .
This functionprovidesanalternativewaytospecifyadistribution.
(a) Showthatthe kth derivative m(k)(t) = EY ketY , andhence m′(0) = E(Y ) and m′′(0) =
E(Y 2).
(b) Showthatthe mgf is m(t) = 1 + tE(Y ) + t2 2!E(Y 2) + t3 3!E(Y 3) + ⋯.
(c) Show thatthe mgf for thePoissondistributionis m(t) = exp[μ(et − 1). Useittofindthe mean andvariance.
(d) The mgf for thenormaldistributionis m(t) = eμt+σ2t2~2. Useittofindthemeanand variance.
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
