Question: Decide whether the system in Problem 5 is stable. A linear dynamic system is stable if the homogeneous solution of its mathematical model, subjected to

Decide whether the system in Problem 5 is stable. A linear dynamic system is stable if the homogeneous solution of its mathematical model, subjected to the prescribed initial conditions, decays. More practically, a linear system is stable if all the eigenvalues of its state matrix have negative real parts; that is, they all lie in the left half plane.

Data From  Problem 5:

\(\left\{\begin{array}{l}\ddot{x}_{1}+2 \dot{x}_{1}+2\left(x_{1}-x_{2}\right)=F(t) \\ \frac{1}{3} x_{2}-2\left(x_{1}-x_{2}\right)=0\end{array}\right.\)

Step by Step Solution

3.46 Rating (166 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Systems Analysis And Design Questions!