Question: Prove that, for any structure function , (x) = xi(1i, x) + (1 xi)(0i, x) where (1i, x) = (x1,..., xi1, 1, xi+1,..., xn),
Prove that, for any structure function φ,
φ(x) = xiφ(1i, x) + (1 − xi)φ(0i, x)
where
(1i, x) = (x1,..., xi−1, 1, xi+1,..., xn),
(0i, x) = (x1,..., xi−1, 0, xi+1,..., xn)
Step by Step Solution
There are 3 Steps involved in it
Get step-by-step solutions from verified subject matter experts
