When the light is passed through the bottom of the sample container, the interference maximum is observed

Question:

When the light is passed through the bottom of the sample container, the interference maximum is observed to be at 41°; when it is passed through the top, the corresponding maximum is at 37°. What is the best explanation for this observation?

(a) The microspheres are more tightly packed at the bottom, because they tend to settle in the suspension.

(b) The microspheres are more tightly packed at the top, because they tend to float to the top of the suspension.

(c) The increased pressure at the bottom makes the microspheres smaller there.

(d) The maximum at the bottom corresponds to m = 2, whereas the maximum at the top corresponds to m = 1.


A colloid consists of particles of one type of substance dispersed in another substance. Suspensions of electrically charged microspheres (microscopic spheres, such as polystyrene) in a liquid such as water can form a colloidal crystal when the microspheres arrange themselves in a regular repeating pattern under the influence of the electrostatic force. Colloidal crystals can selectively manipulate different wavelengths of visible light. Just as we can study crystalline solids by using Bragg reflection of x rays, we can study colloidal crystals through Bragg scattering of visible light from the regular arrangement of charged microspheres. Because the light is traveling through a liquid when it experiences the path differences that lead to constructive interference, it is the wavelength in the liquid that determines the angles at which Bragg reflections are seen. In one experiment, laser light with a wavelength in vacuum of 650 nm is passed through a sample of charged polystyrene spheres in water. A strong interference maximum is then observed when the incident and reflected beams make an angle of 39° with the colloidal crystal planes.

Fantastic news! We've Found the answer you've been seeking!

Step by Step Answer:

Related Book For  book-img-for-question

University Physics with Modern Physics

ISBN: 978-0133977981

14th edition

Authors: Hugh D. Young, Roger A. Freedman

Question Posted: