Go back

Accelerator Physics(3rd Edition)

Authors:

S. Y. Lee

Free accelerator physics 3rd edition s. y. lee 9814374946, 978-9814374941
10 ratings
Cover Type:Hardcover
Condition:Used

In Stock

Include with your book

Free shipping: April 04, 2024
Access to 3 Million+ solutions Free
Ask 10 Questions from expert 200,000+ Expert answers
7 days-trial

Total Price:

$0

List Price: $68.00 Savings: $68(100%)

Book details

ISBN: 9814374946, 978-9814374941

Book publisher: Wspc

Get your hands on the best-selling book Accelerator Physics 3rd Edition for free. Feed your curiosity and let your imagination soar with the best stories coming out to you without hefty price tags. Browse SolutionInn to discover a treasure trove of fiction and non-fiction books where every page leads the reader to an undiscovered world. Start your literary adventure right away and also enjoy free shipping of these complimentary books to your door.

Accelerator Physics 3rd Edition Summary: Research and development of high energy accelerators began in 1911. Since then, milestones achieved are: (1) development of high gradient dc and rf accelerators, (2) achievement of high field magnets with excellent field quality, (3) discovery of transverse and longitudinal beam focusing principles, (4) invention of high power rf sources, (5) improvement of ultra-high vacuum technology, (6) attainment of high brightness (polarized/unpolarized) electron/ionsources, (7) advancement of beam dynamics and beam manipulation schemes, such as beam injection, accumulation, slow and fast extraction, beam damping and beam cooling, instability feedback, laser-beam interaction and harvesting instability for high brilliance coherent photon source. The impacts of the accelerator development are evidenced by the many ground-breaking discoveries in particle and nuclear physics, atomic and molecular physics, condensed matter physics, biology, biomedical physics, nuclear medicine, medical therapy, and industrial processing. This book is intended to be used as a graduate or senior undergraduate textbook in accelerator physics and science. It can be used as preparatory course material in graduate accelerator physics thesis research. The text covers historical accelerator development, transverse betatron motion, synchrotron motion, an introduction to linear accelerators, and synchrotron radiation phenomena in low emittance electron storage rings, introduction to special topics such as the free electron laser and the beam-beam interaction. Attention is paid to derivation of the action-angle variables of the phase space, because the transformation is important for understanding advanced topics such as the collective instability and nonlinear beam dynamics. Each section is followed by exercises, which are designed to reinforce concepts and to solve realistic accelerator design problems.