Data Mining For Bioinformatics(1st Edition)

Authors:

Sumeet Dua, Pradeep Chowriappa

Type:Hardcover/ PaperBack / Loose Leaf
Condition: Used/New

In Stock: 1 Left

Shipment time

Expected shipping within 2 - 3 Days
Access to 35 Million+ Textbooks solutions Free
Ask Unlimited Questions from expert AI-Powered Answers 30 Min Free Tutoring Session
7 days-trial

Total Price:

$87.5

List Price: $125.00 Savings: $37.5 (30%)
Access to 30 Million+ solutions
Ask 50 Questions from expert AI-Powered Answers 24/7 Tutor Help Detailed solutions for Data Mining For Bioinformatics

Price:

$9.99

/month

Book details

ISBN: 0367380706, 978-0367380700

Book publisher: CRC Press

Book Price $87.5 : Covering theory, algorithms, and methodologies, as well as data mining technologies, Data Mining for Bioinformatics provides a comprehensive discussion of data-intensive computations used in data mining with applications in bioinformatics. It supplies a broad, yet in-depth, overview of the application domains of data mining for bioinformatics to help readers from both biology and computer science backgrounds gain an enhanced understanding of this cross-disciplinary field. The book offers authoritative coverage of data mining techniques, technologies, and frameworks used for storing, analyzing, and extracting knowledge from large databases in the bioinformatics domains, including genomics and proteomics. It begins by describing the evolution of bioinformatics and highlighting the challenges that can be addressed using data mining techniques. Introducing the various data mining techniques that can be employed in biological databases, the text is organized into four sections:Supplies a complete overview of the evolution of the field and its intersection with computational learningDescribes the role of data mining in analyzing large biological databases?explaining the breath of the various feature selection and feature extraction techniques that data mining has to offerFocuses on concepts of unsupervised learning using clustering techniques and its application to large biological dataCovers supervised learning using classification techniques most commonly used in bioinformatics?addressing the need for validation and benchmarking of inferences derived using either clustering or classificationThe book describes the various biological databases prominently referred to in bioinformatics and includes a detailed list of the applications of advanced clustering algorithms used in bioinformatics. Highlighting the challenges encountered during the application of classification on biologica