Hands On Transfer Learning With Python Implement Advanced Deep Learning And Neural Network Models Using Tensorflow And Keras(1st Edition)

Authors:

Dipanjan Sarkar ,Raghav Bali ,Tamoghna Ghosh

Type:Hardcover/ PaperBack / Loose Leaf
Condition: Used/New

In Stock: 1 Left

Shipment time

Expected shipping within 2 - 3 Days
Access to 35 Million+ Textbooks solutions Free
Ask Unlimited Questions from expert AI-Powered Answers 30 Min Free Tutoring Session
7 days-trial

Total Price:

$0

List Price: $23.53 Savings: $23.53 (100%)
Access to 30 Million+ solutions
Ask 50 Questions from expert AI-Powered Answers 24/7 Tutor Help Detailed solutions for Hands On Transfer Learning With Python Implement Advanced Deep Learning And Neural Network Models Using Tensorflow And Keras

Price:

$9.99

/month

Book details

ISBN: 1788831306, 978-1788831307

Book publisher: Packt Publishing

Book Price $0 : Deep Learning Simplified By Taking Supervised, Unsupervised, And Reinforcement Learning To The Next Level Using The Python EcosystemKey FeaturesBuild Deep Learning Models With Transfer Learning Principles In Pythonimplement Transfer Learning To Solve Real-world Research ProblemsPerform Complex Operations Such As Image Captioning Neural Style TransferBook DescriptionTransfer Learning Is A Machine Learning (ML) Technique Where Knowledge Gained During Training A Set Of Problems Can Be Used To Solve Other Similar Problems.The Purpose Of This Book Is Two-fold; Firstly, We Focus On Detailed Coverage Of Deep Learning (DL) And Transfer Learning, Comparing And Contrasting The Two With Easy-to-follow Concepts And Examples. The Second Area Of Focus Is Real-world Examples And Research Problems Using TensorFlow, Keras, And The Python Ecosystem With Hands-on Examples.The Book Starts With The Key Essential Concepts Of ML And DL, Followed By Depiction And Coverage Of Important DL Architectures Such As Convolutional Neural Networks (CNNs), Deep Neural Networks (DNNs), Recurrent Neural Networks (RNNs), Long Short-term Memory (LSTM), And Capsule Networks. Our Focus Then Shifts To Transfer Learning Concepts, Such As Model Freezing, Fine-tuning, Pre-trained Models Including VGG, Inception, ResNet, And How These Systems Perform Better Than DL Models With Practical Examples. In The Concluding Chapters, We Will Focus On A Multitude Of Real-world Case Studies And Problems Associated With Areas Such As Computer Vision, Audio Analysis And Natural Language Processing (NLP).By The End Of This Book, You Will Be Able To Implement Both DL And Transfer Learning Principles In Your Own Systems.What You Will LearnSet Up Your Own DL Environment With Graphics Processing Unit (GPU) And Cloud SupportDelve Into Transfer Learning Principles With ML And DL ModelsExplore Various DL Architectures, Including CNN, LSTM, And Capsule Networks Learn About Data And Network Representation And Loss FunctionsGet To Grips With Models And Strategies In Transfer LearningWalk Through Potential Challenges In Building Complex Transfer Learning Models From Scratch Explore Real-world Research Problems Related To Computer Vision And Audio Analysis Understand How Transfer Learning Can Be Leveraged In NLPWho This Book Is ForHands-On Transfer Learning With Python Is For Data Scientists, Machine Learning Engineers, Analysts And Developers With An Interest In Data And Applying State-of-the-art Transfer Learning Methodologies To Solve Tough Real-world Problems. Basic Proficiency In Machine Learning And Python Is Required.Table Of ContentsMachine Learning FundamentalsDeep Learning EssentialsUnderstanding Deep Learning Architectures Transfer Learning FundamentalsUnleash The Power Of Transfer LearningImage Recognition And ClassificationText Document CategorizationAudio Identification And CategorizationDeep DreamNeural Style TransferAutomated Image Caption GeneratorImage Colorization