Machine Learning Models And Algorithms For Big Data Classification Thinking With Examples For Effective Learning(1st Edition)

Authors:

Shan Suthaharan

Type:Hardcover/ PaperBack / Loose Leaf
Condition: Used/New

In Stock: 1 Left

Shipment time

Expected shipping within 2 - 3 Days
Access to 35 Million+ Textbooks solutions Free
Ask Unlimited Questions from expert AI-Powered Answers 30 Min Free Tutoring Session
7 days-trial

Total Price:

$87.1

List Price: $124.43 Savings: $37.33 (30%)
Access to 30 Million+ solutions
Ask 50 Questions from expert AI-Powered Answers 24/7 Tutor Help Detailed solutions for Machine Learning Models And Algorithms For Big Data Classification Thinking With Examples For Effective Learning

Price:

$9.99

/month

Book details

ISBN: 148997640X, 978-1489976406

Book publisher: Springer

Offer Just for You!: Buy 2 books before the end of January and enter our lucky draw.

Book Price $87.1 : This Book Presents Machine Learning Models And Algorithms To Address Big Data Classification Problems. Existing Machine Learning Techniques Like The Decision Tree (a Hierarchical Approach), Random Forest (an Ensemble Hierarchical Approach), And Deep Learning (a Layered Approach) Are Highly Suitable For The System That Can Handle Such Problems. This Book Helps Readers, Especially Students And Newcomers To The Field Of Big Data And Machine Learning, To Gain A Quick Understanding Of The Techniques And Technologies; Therefore, The Theory, Examples, And Programs (Matlab And R) Presented In This Book Have Been Simplified, Hardcoded, Repeated, Or Spaced For Improvements. They Provide Vehicles To Test And Understand The Complicated Concepts Of Various Topics In The Field. It Is Expected That The Readers Adopt These Programs To Experiment With The Examples, And Then Modify Or Write Their Own Programs Toward Advancing Their Knowledge For Solving More Complex And Challenging Problems. The Presentation Format Of This Book Focuses On Simplicity, Readability, And Dependability So That Both Undergraduate And Graduate Students As Well As New Researchers, Developers, And Practitioners In This Field Can Easily Trust And Grasp The Concepts, And Learn Them Effectively. It Has Been Written To Reduce The Mathematical Complexity And Help The Vast Majority Of Readers To Understand The Topics And Get Interested In The Field. This Book Consists Of Four Parts, With The Total Of 14 Chapters. The First Part Mainly Focuses On The Topics That Are Needed To Help Analyze And Understand Data And Big Data. The Second Part Covers The Topics That Can Explain The Systems Required For Processing Big Data. The Third Part Presents The Topics Required To Understand And Select Machine Learning Techniques To Classify Big Data. Finally, The Fourth Part Concentrates On The Topics That Explain The Scaling-up Machine Learning, An Important Solution For Modern Big Data Problems.