Go back

Mathematical Modeling In Experimental Nutrition Volume 445(1st Edition)

Authors:

Andrew J. Clifford ,Hans-Georg Muller

Free mathematical modeling in experimental nutrition  volume 445 1st edition andrew j. clifford ,hans-georg muller
9 ratings
Cover Type:Hardcover
Condition:Used

In Stock

Include with your book

Free shipping: April 04, 2024
Access to 3 Million+ solutions Free
Ask 10 Questions from expert 200,000+ Expert answers
7 days-trial

Total Price:

$0

List Price: $128.21 Savings: $128.21(100%)

Book details

ISBN: 1489919619, 978-1489919618

Book publisher: Springer

Get your hands on the best-selling book Mathematical Modeling In Experimental Nutrition Volume 445 1st Edition for free. Feed your curiosity and let your imagination soar with the best stories coming out to you without hefty price tags. Browse SolutionInn to discover a treasure trove of fiction and non-fiction books where every page leads the reader to an undiscovered world. Start your literary adventure right away and also enjoy free shipping of these complimentary books to your door.

Mathematical Modeling In Experimental Nutrition Volume 445 1st Edition Summary: Nutrients have been recognized as essential for maximum growth, successful reproduction, and infection prevention since the 1940s; since that time, the lion's share of nutrient research has focused on defining their role in these processes. Around 1990, however, a major shift began in the way that researchers viewed some nutrients­ particularly the vitamins. This shift was motivated by the discovery that modest declines in vitamin nutritional status are associated with an increased risk of ill-health and disease (such as neural tube defects, heart disease, and cancer), especially in those populations or individuals who are genetically predisposed. In an effort to expand upon this new understanding of nutrient action, nutritionists are increasingly turning their focus to the mathematical modeling of nutrient kinetic data. The availability of suitably-tagged (isotope) nutrients (such as B-carotene, vitamin A, folate, among others), sensitive analytical methods to trace them in humans (mass spectrometry and accelerator mass spectrometry), and powerful software (capable of solving and manipulating differential equations efficiently and accurately), has allowed researchers to construct mathematical models aimed at characterizing the dynamic and kinetic behavior of key nutrients in vivo in humans at an unparalleled level of detail.