Statistical And Neural Classifiers(1st Edition)

Authors:

Sarunas Raudys

Type:Hardcover/ PaperBack / Loose Leaf
Condition: Used/New

In Stock: 2 Left

Shipment time

Expected shipping within 2 - 3 Days
Access to 35 Million+ Textbooks solutions Free
Ask Unlimited Questions from expert AI-Powered Answers 30 Min Free Tutoring Session
7 days-trial

Total Price:

$83.22

List Price: $118.88 Savings: $35.66 (30%)
Access to 30 Million+ solutions
Ask 50 Questions from expert AI-Powered Answers 24/7 Tutor Help Detailed solutions for Statistical And Neural Classifiers

Price:

$9.99

/month

Book details

ISBN: 1852332972, 978-1852332976

Book publisher: Springer

Book Price $83.22 : Automatic (machine) Recognition, Description, Classification, And Groupings Of Patterns Are Important Problems In A Variety Of Engineering And Scientific Disciplines Such As Biology, Psychology, Medicine, Marketing, Computer Vision, Artificial Intelligence, And Remote Sensing. Given A Pattern, Its Recognition/classification May Consist Of One Of The Following Two Tasks: (1) Supervised Classification (also Called Discriminant Analysis); The Input Pattern Is Assigned To One Of Several Predefined Classes, (2) Unsupervised Classification (also Called Clustering); No Pattern Classes Are Defined A Priori And Patterns Are Grouped Into Clusters Based On Their Similarity. Interest In The Area Of Pattern Recognition Has Been Renewed Recently Due To Emerging Applications Which Are Not Only Challenging But Also Computationally More Demanding (e. G. , Bioinformatics, Data Mining, Document Classification, And Multimedia Database Retrieval). Among The Various Frameworks In Which Pattern Recognition Has Been Traditionally Formulated, The Statistical Approach Has Been Most Intensively Studied And Used In Practice. More Recently, Neural Network Techniques And Methods Imported From Statistical Learning Theory Have Received Increased Attention. Neural Networks And Statistical Pattern Recognition Are Two Closely Related Disciplines Which Share Several Common Research Issues. Neural Networks Have Not Only Provided A Variety Of Novel Or Supplementary Approaches For Pattern Recognition Tasks, But Have Also Offered Architectures On Which Many Well-known Statistical Pattern Recognition Algorithms Can Be Mapped For Efficient (hardware) Implementation. On The Other Hand, Neural Networks Can Derive Benefit From Some Well-known Results In Statistical Pattern Recognition.