Question: This problem concerns course scores (on a 0100 scale) for a large undergraduate computer programming course. The class is composed of both underclassmen (freshmen and
• Score: score on a 0–100 scale
• Upper Class: 1 for an upperclassman, 0 otherwise
• High Math: 1 for a high mathematical background, 0 otherwise
For the following questions, assume that the students in this course represent a random sample from all college students who might take the course. This latter group is the population.
a. Find a 90% confidence interval for the population mean score for the course. Do the same for the mean of all upperclassmen. Do the same for the mean of all upperclassmen with a high mathematical background.
b. The professor believes he has enough evidence to “prove” the research hypothesis that upperclassmen score at least five points better, on average, than lowerclassmen. Do you agree? Answer by running the appropriate test.
c. If a “good” grade is one that is at least 80, is there enough evidence to reject the null hypothesis that the fraction of good grades is the same for students with low math backgrounds as those with high math backgrounds? Which do you think is more appropriate, a one-tailed or two-tailed test? Explain your reasoning.
Step by Step Solution
3.49 Rating (166 Votes )
There are 3 Steps involved in it
tr msoheightsourceauto col msowidthsourceauto br msodataplacementsamecell style0 msonumberformatGeneral textaligngeneral verticalalignbottom whitespacenowrap msorotate0 msobackgroundsourceauto msopatt... View full answer
Get step-by-step solutions from verified subject matter experts
Document Format (1 attachment)
415-M-S-S-I (555).xlsx
300 KBs Excel File
