Question: Compute the first-order central difference approximations of O(h4) for each of the following functions at the specified location and for the specified step size: (a)

Compute the first-order central difference approximations of O(h4) for each of the following functions at the specified location


- 0.5 0.5 1.5 -2 - 1.5 0.05399 0.12952 0.24197 039894 0.35207 0.39894 0.24197 0.12952 0.05399 f(x)


and for the specified step size:

(a) y = x3 + 4x – 15                  at x = 0,           h = 0.25

(b) y = x2 cos x                        at x = 0.4,        h = 0.1

(c) y = tan(x/3)                        at x = 3,           h = 0.5

(d) y = sin(0.5√x)/x                 at x = 1,           h = 0.2

(e) y = ex + x                           at x = 2,           h = 0.2

Compare your results with the analyticalsolutions.

- 0.5 0.5 1.5 -2 - 1.5 0.05399 0.12952 0.24197 039894 0.35207 0.39894 0.24197 0.12952 0.05399 f(x)

Step by Step Solution

3.44 Rating (170 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

a x f x x i 2 05 17125 x i 1 025 160156 x i 0 15 x ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Document Format (1 attachment)

Word file Icon

45-M-N-A-D-I (47).docx

120 KBs Word File

Students Have Also Explored These Related Numerical Analysis Questions!