Question: A depth-first forest classifies the edges of a graph into tree, back, forward, and cross edges. A breadth-first tree can also be used to classify

A depth-first forest classifies the edges of a graph into tree, back, forward, and cross edges. A breadth-first tree can also be used to classify the edges reachable from the source of the search into the same four categories. a. Prove that in a breadth-first search of an undirected graph, the following properties hold:
1. There are no back edges and no forward edges.
2. For each tree edge (u, v), we have d[v] = d[u] + 1.
3. For each cross edge (u, v), we have d[v] = d[u] or d[v] = d[u] + 1.
b. Prove that in a breadth-first search of a directed graph, the following properties hold:
1. There are no forward edges.
2. For each tree edge (u, v), we have d[v] = d[u] + 1.
3. For each cross edge (u, v), we have d[v] ≤ d[u] + 1.
4. For each back edge (u, v), we have 0 ≤ d[v] ≤ d[u].

Step by Step Solution

3.33 Rating (171 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

a 1 Suppose u v is a back edge or a forward edge in a BFS of an undirected graph Then one of u and v ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Document Format (1 attachment)

Word file Icon

C-S-A (184).docx

120 KBs Word File

Students Have Also Explored These Related Algorithms Questions!