Question: Hexagonal emit-packed structure Consider first Brillouin zone of a crystal with a simple hexagonal lattice in three dimensions with lattice constants a and c. Let
Hexagonal emit-packed structure Consider first Brillouin zone of a crystal with a simple hexagonal lattice in three dimensions with lattice constants a and c. Let Gc denote the shortest reciprocal lattice vector parallel to the c axis of the crystal lattice.
(a) Show that for a hexagonal-close-packed crystal structure the Fourier component U(Gc) of the crystal potential U(r) is zero.
(b) Is U (2Gc) also zero?
(c) Why is it possible in principle to obtain an insulator made up of divalent atoms at tile lattice points of a simple hexagonal lattice?
(d) Why is it nut possible to obtain an insulator made up of monovalent atoms in a hexagonal-close-packed structure?
Step by Step Solution
3.34 Rating (163 Votes )
There are 3 Steps involved in it
11201 a In the hcp structure there is one atom whose z coor... View full answer
Get step-by-step solutions from verified subject matter experts
Document Format (1 attachment)
14-P-S-S-G-P (60).docx
120 KBs Word File
