Question: Let A be a nonempty set and fix the set B, where B A. Define the relation R on P(A) by X R Y,

Let A be a nonempty set and fix the set B, where B ⊆ A. Define the relation R on P(A) by X R Y, for X, Y ⊆ A, if B ⋂ X = B ⋂ Y.
(a) Verify that R is an equivalence relation on P(A).
(b) If A = {1, 2, 3} and B = {1, 2}, find the partition of P(A) induced by R.
(c) If A = {1, 2, 3, 4, 5} and B = {1, 2, 3}, find [X] if X = {1, 3, 5}.
(d) For A = {1, 2, 3, 4, 5} and B = {1, 2, 3}, how many equivalence classes are in the partition induced by R?

Step by Step Solution

3.40 Rating (162 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

a For all X A B X B X so XRX and R is reflexive If X Y A then XRY X B Y B Y ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Document Format (1 attachment)

Word file Icon

954-M-L-A-L-S (7881).docx

120 KBs Word File

Students Have Also Explored These Related Linear Algebra Questions!