Question: Let U and W be subspaces of Rn. Define their intersection U W and their sum U + W as follows: U W={X
U ∩ W={X in Rn | X belongs to both U and W}.
U+ W= {X in Rn | X is a sum of a vector in U and a vector in W}.
(a) Show that U ∩ W is a subspace of Rn.
(b) Show that U + W is a subspace of Rn.
Step by Step Solution
3.50 Rating (180 Votes )
There are 3 Steps involved in it
b First 0 is in U W because 0 00 and 0 is in both U and W Now suppose that P and Q are ... View full answer
Get step-by-step solutions from verified subject matter experts
Document Format (1 attachment)
950-M-L-A-L-S (6433).docx
120 KBs Word File
