Answered step by step
Verified Expert Solution
Link Copied!
Question
1 Approved Answer

A perfectly plane house roof makes an angle - with the horizontal. When its temperature changes, between Tc before dawn each day to Th in

A perfectly plane house roof makes an angle - with the horizontal. When its temperature changes, between Tc before dawn each day to Th in the middle of each afternoon, the roof expands and contracts uniformly with a coefficient of thermal expansion α1. Resting on the roof is a flat rectangular metal plate with expansion coefficient α2, greater than α1. The length of the plate is L, measured up the slope of the roof. The component of the plate’s weight perpendicular to the roof is supported by a normal force uniformly distributed over the area of the plate. The coefficient of kinetic friction between the plate and the roof is μk. The plate is always at the same temperature as the roof, so we assume its temperature is continuously changing. Because of the difference in expansion coefficients, each bit of the plate is moving relative to the roof below it, except for points along a certain horizontal line running across the plate. We call this the stationary line. If the temperature is rising, parts of the plate below the stationary line are moving down relative to the roof and feel a force of kinetic friction acting up the roof. Elements of area above the stationary line are sliding up the roof and on them kinetic friction acts downward parallel to the roof. The stationary line occupies no area, so we assume no force of static friction acts on the plate while the temperature is changing. The plate as a whole is very nearly in equilibrium, so the net friction force on it must be equal to the component of its weight acting down the incline. (a) Prove that the stationary line is at a distance of below the top edge of the plate (b) Analyze the forces that act on the plate when the temperature is falling, and prove that the stationary line is at that same distance above the bottom edge of the plate. (c) Show that the plate steps down the roof like an inchworm, moving each day by the distance (d) Evaluate the distance an aluminum plate moves each day if its length is 1.20 m, if the temperature cycles between 4.00°C and 36.0°C, and if the roof has slope 18.5°, coefficient of linear expansion 1.50 X 10-5 (°C)-1, and coefficient of friction 0.420 with the plate. (e) What If? What if the expansion coefficient of the plate is less than that of the roof? Will the plate creep up the roof?

Step by Step Solution

3.46 Rating (143 Votes )

There are 3 Steps involved in it

Step: 1 Unlock smart solutions to boost your understanding

Temperature rising Temperature Falling At dawn the n... blur-text-image
Get Instant Access to Expert-Tailored Solutions

83% of Thermodynamics Students Improved their GPA!

Step: 2Unlock detailed examples and clear explanations to master concepts

blur-text-image_2

Step: 3Unlock to practice, ask, and learn with real-world examples

blur-text-image_3

Document Format ( 1 attachment)

Word file Icon

P-T-T (74).docx

120 KBs Word File

See step-by-step solutions with expert insights and AI powered tools for academic success

  • tick Icon Access 30 Million+ textbook solutions.
  • tick Icon Ask unlimited questions from AI Tutors.
  • tick Icon 24/7 Expert guidance tailored to your subject.
  • tick Icon Order free textbooks.

Ace Your Homework with AI

Get the answers you need in no time with our AI-driven, step-by-step assistance

Get Started

Recommended Textbook for

College Physics

Authors: Jerry D. Wilson, Anthony J. Buffa, Bo Lou

7th edition

9780321571113, 321601831, 978-0321601834

More Books

Students explore these related Thermodynamics questions