Question: A student is asked to measure the acceleration of a cart on a frictionless inclined plane as in Figure 5.11, using an air track, a

A student is asked to measure the acceleration of a cart on a “frictionless” inclined plane as in Figure 5.11, using an air track, a stopwatch, and a meter stick. The height of the incline is measured to be 1.774 cm, and the total length of the incline is measured to be d = 127.1 cm. Hence, the angle of inclination θ is determined from the relation sin θ = 1.774/127.1. The cart is released from rest at the top of the incline, and its position x along the incline is measured as a function of time, where x = 0 refers to the initial position of the cart. For x values of 10.0 cm, 20.0 cm, 35.0 cm, 50.0 cm, 75.0 cm, and 100 cm, the measured times at which these positions are reached (averaged over five runs) are 1.02 s, 1.53 s, 2.01 s, 2.64 s, 3.30 s, and 3.75 s, respectively. Construct a graph of x versus t2, and perform a linear least-squares fit to the data. Determine the acceleration of the cart from the slope of this graph, and compare it with the value you would get using a` = g sin θ, where g = 9.80 m/s2.

Step by Step Solution

3.44 Rating (154 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

3 xm ts 0 0 0 102 1040 0100 153 2341 0200 201 4040 0350 264 6970 0500 330 1089 0750 375 1406 100 ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Document Format (1 attachment)

Word file Icon

P-M-L-M (62).docx

120 KBs Word File

Students Have Also Explored These Related Mechanics Questions!