Question: Kuttas third-order method is defined by y n+1 = y n + 1/6(k 1 + 4k 2 + k * 3 ) with k 1

Kutta€™s third-order method is defined by yn+1= yn+ 1/6(k1+ 4k2+ k*3) with k1and k2as in RK (Table 21.3) and k*3= hf(xn+1, yn- k1+ 2k2). Apply this method to (4) in (6). Choose h = 0.2 and do 5 steps. Compare with Table 21.5.

Table 21.3

ALGORITHM RUNGE-KUTTA (f, xo, Yo, h, N). This algorithm computes the solution of the initial value problem y' = f(x, y),

Table 21.5

Error y = et – x – 1 Improved Euler (Table 21.3) Runge-Kutta (Table 21.5) Euler (Table 21.1) 0.000003 0.000007 0.000

ALGORITHM RUNGE-KUTTA (f, xo, Yo, h, N). This algorithm computes the solution of the initial value problem y' = f(x, y), y(Xx) = Yo at equidistant points X1 = xo + h, x2 = xo + 2h, , XN = xo + Nh; (9) here f is such that this problem has a unique solution on the interval [Xo, Xx] (see Sec. 1.7). INPUT: Function f, initial values xo, Yo, step size h, number of steps N OUTPUT: Approximation yn+1 to the solution y(Xn+1) at xn+1 = xo + (n + 1)h, where n = 0, 1, , N 1 For n = 0, 1, .., N 1 do: ki = hf(xn, Yn) k2 = hf(xn + h, yn + k1) k3 = hf(xn + h, yn + k2) k4 = hf(Xn + h, yn + k3) Xn+1 = Xn + h Yn+1 = Yn + & (k1 + 2k2 + 2k3 + k4) OUTPUT xn+1 Yn+1 End Stop End RUNGE-KUTTA Error y = et x 1 Improved Euler (Table 21.3) Runge-Kutta (Table 21.5) Euler (Table 21.1) 0.000003 0.000007 0.000011 0.2 0.021403 0.091825 0.0014 0.021 0.052 0.094 0.152 0.4 0.0034 0.0063 0.0102 0.6 0.222119 0.425541 0.8 0.718282 0.230 0.0156 0.000020 0.000031 1.0

Step by Step Solution

3.37 Rating (175 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

From y x y and the given formula we get ... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Advanced Engineering Mathematics Questions!