Question: In Example 1, we found the maximum of (x, y) = 2x + 5y on the ellipse (x/4) 2 + (y/3) 2 = 1. Solve

In Example 1, we found the maximum of ƒ(x, y) = 2x + 5y on the ellipse (x/4)2 + (y/3)2 = 1. Solve this problem again without using Lagrange multipliers. First, show that the ellipse is parametrized by x = 4 cos t, y = 3 sin t. Then find the maximum value of ƒ(4 cos t, 3 sin t) using single-variable calculus. Is one method easier than the other?

EXAMPLE 1 Find the extreme values of f(x, y) = 2x+5y on the ellipse (-) + ( )  = 1

EXAMPLE 1 Find the extreme values of f(x, y) = 2x + 5y on the ellipse (-) + (-) = 1

Step by Step Solution

3.49 Rating (169 Votes )

There are 3 Steps involved in it

1 Expert Approved Answer
Step: 1 Unlock

We want to find the maximum of fx y 2x 5y on the ellipse 4 1 without using Lagrange multipliers Cons... View full answer

blur-text-image
Question Has Been Solved by an Expert!

Get step-by-step solutions from verified subject matter experts

Step: 2 Unlock
Step: 3 Unlock

Students Have Also Explored These Related Calculus 4th Questions!