Question: Let (mathcal{S}) be the oriented half-cylinder in Figure 15. In (a)-(f), determine whether (iint_{mathcal{S}} mathbf{F} cdot d mathbf{S}) is positive, negative, or zero. Explain your
Let \(\mathcal{S}\) be the oriented half-cylinder in Figure 15. In (a)-(f), determine whether \(\iint_{\mathcal{S}} \mathbf{F} \cdot d \mathbf{S}\) is positive, negative, or zero. Explain your reasoning.
(a) \(\mathbf{F}=\mathbf{i}\)
(b) \(\mathbf{F}=\mathbf{j}\)
(c) \(\mathbf{F}=\mathbf{k}\)
(d) \(\mathbf{F}=y \mathbf{i}\)
(e) \(\mathbf{F}=-y \mathbf{j}\)
(f) \(\mathbf{F}=x \mathbf{j}\)

n X N
Step by Step Solution
3.34 Rating (154 Votes )
There are 3 Steps involved in it
S is parametrized by Phitheta zcos theta sin theta z quad 0 leq z leq 3 quadfracpi2 leq theta leq fracpi2 Hence beginaligned mathbfTtheta fracpartial ... View full answer
Get step-by-step solutions from verified subject matter experts
